
 Venky

ASP.Net 2.0 Training

VS File Management

ASP.Net Image

ASP.Net Checkbox

ASP.Net ImageButton

ASP.Net RadioButton

ASP.Net Literal

ASP.Net Panel

ASP.Net LinkButton

ASP.Net Calendar

ASP.Net BulletedList

ASP.Net FileUpload

ASP.Net User Controls

ASP.Net PlaceHolder

ASP.Net Lists

ASP.Net CheckBoxList

ASP.Net DropDownList

ASP.Net Data Access

ASP.Net DetailsView

ASP.Net FormView

ASP.Net Repeater Control

ASP.Net:Master Pages

Sending EMail

MultiView

Tabbed MultiView

ASP.Net:Wizard Control

Login Controls 1

ASP.Net:Site Navigation

ASP.Net:Classes

ASP.Net:SQLDataSource Control

ASP.Net:Error Handling

ASP.Net:dataTables

ASP.Net:datasets

ASP.Net Tutorial
Step by Step instructions with plenty of pictures. Learn to create ASP.Net websites using

Visual Studio quickly and easily. Visual Studio makes creating database connected websites
easier than ever. Connection your website to SQL Server or Access sometimes without writing
any code. Learn ASP.Net online for free. Learn how to do it in code as well as how to do it the
EASY way.

ASP.Net Training
Not just code examples, but step by step training in ASP.Net

ASP.Net is Microsoft’s latest version of ASP
All the controls are covered in detail
Including the data bound controls

ADO.Net tutorial
Currently I have tutorials for the data Bound controls but I also plan to add complete

ADO.Net training and tutorials.

 Venky

Visual Studio File Management
Solution Explorer:

• Solution explorer contains all your files in your website
• Right click on project name and you can:

o add new item
o add existing item
o add a new folder
o Add an ASP.Net folder

• Select Add new item

• Select web form for a new ASP.net page
• Notice all the other types of files available
• Name your new file
• Check or uncheck Place code in separate file
• This will either place the programming logic in a code behind or put it all in one file
• Click Add

Add a new item from toolbar:
 • Select the drop down arrow on the toolbar shown.
• Select Add new item or Add existing item
• Select Add new item or Add existing item

 Venky

Add Existing item
This can be used to add images and other files created in another program
Remove items from project:
• Highlight it and delete on keyboard- erases the file
• Right click file and select delete

Exclude from Project:
• Right click and exclude from project
• This does not delete the actual file

You can use the file again by right-clicking and selecting Include in Project

Open a File in Code View or Design View:

• right click file in solution explorer and select view code or select code view button

You can also double click the file in the solution explorer to view it in design view

Refresh Button

 Venky

Properties window:
Setting project properties:
• Select the project within solution explorer and properties show up in the properties panel
• Right click on projects title and select properties

Use this dialog box for advanced property settings of your web site project
You can also set properties in the Properties Window while selecting the project name
Code View
• In code view you can access any class by the first dropdown
• You can reference any method and events from the second dropdown

ASP.Net 2.0 uses partial classes so you no longer have to include lines of generated code
in all your files

 Venky

All code blocks have the ability to be collapsed and expanded:

Select from MENU:
Tools
Options
General
• You can switch from a tabbed or MDI Window view

Environment
• Fonts and Colors
• Can change size and fonts of code

Text Editor
• You can turn line numbering on or off

 Venky

Intellisense
• While typing code Visual Studio will add a pop up box when you click the dot

ASP: Image

• The Image control is used to display an image.

 Venky

Property Description
AlternateText An alternate text for the image
Enabled Specifies whether this control is enabled
Font Specifies the font for the alternate text
id A unique id for the control
ImageAlign Specifies the alignment of the image. Legal values are:

• NotSet ,AbsBottom, AbsMiddle, BaseLine, Bottom
• Left, Middle, Right, TextTop, Top

ImageUrl The URL of the image to display for the link
Runat Specifies that the control is a server control. Must be set to "server"

Download the following image:http://www.morosko.com/comics1.gif save it to the
c:\inetpub\wwwroot directory
1 <html><body>
2 <form runat="server">
3 <asp:Image runat="server" AlternateText="Ad" ImageUrl=" comics1.gif " />
4 </form></body>
5 </html>
Save as: ImageEx.aspx

Try this in Visual Studio:
• Open Visual Studio->Add a new web form->Name it ImageEx.aspx
• Add an Image control

• In the properties window change the AlternateText property to Ad
• Add an existing item and select the comics1.gif file
• Select the image control again
• Click on the ellipsis in the imageURL property

• Add the Comics1.gif image file
• Test it

 Venky

Checkbox

• The CheckBox control is used to display a check box.

Property Description
AutoPostBack A Boolean value that specifies whether the form should be posted

immediately after the Checked property has changed or not. Default is
false

Checked A Boolean value that specifies whether the check box is checked or not

id A unique id for the control
OnCheckedChanged The name of the function to be executed when the Checked property has

changed
runat Specifies that the control is a server control. Must be set to "server"

Text The text next to the check box
TextAlign On which side of the check box the text should appear (right or left)

1 <script runat="server">
2 Sub Check(sender As Object, e As EventArgs)
3 if check1.Checked then
4 work.Text=home.Text
5 else
6 work.Text=""
7 end if
8 End Sub
9 </script>
10 <html>
11 <body>
12 <form runat="server">
13 <p>Home Phone:
14 <asp:TextBox id="home" runat="server" />
15

16 Work Phone:
17 <asp:TextBox id="work" runat="server" />
18 <asp:CheckBox id="check1" Text="Same as home phone" TextAlign="Right"

AutoPostBack="True" OnCheckedChanged="Check" runat="server" />
19 </p>
20 </form>
21 </body>
22 </html>
Save as: Checkbox.aspx

 Venky

• Open Visual Studio
• Add a new webform
• Name it checkbox.aspx
• Click the Add button
• Select the Design View
• Add 2 labels and 2 textbox controls
• Add a checkbox control

• Change the text of the labels to:

Work Phone:
• Change the id property of the textboxes to:

Home Work
• Change the id of the checkbox to:

Check1
• Change the text of the checkbox to:

Same as home phone
• Change the textAlign property to right
• Change AutoPostBack to true

• Double-click the checkbox
• Add this code:

 If Check1.Checked Then
 work.Text = home.Text
 Else
 work.Text = ""
 End If

• Test it by pressing CTRL + F5

 Venky

ImageButton

• The ImageButton control is used to display a clickable image.

Property Description
CausesValidation By default, a page is validated when a Button control is clicked. To

prevent a page from being validated when clicking on a Button
control, set this property to "false"

id A unique id for the control
ImageUrl The URL of the image to display
OnClick The name of the function to be executed when the image is clicked

runat Specifies that the control is a server control. Must be set to "server"

• Open Visual Studio
• Add a new webform
• Name it imageButton.aspx
• Click the Add button
• Select the Design View
• Add an ImageButton control to the webform
• Name it smallImage1
• Repeat it 3 more times, naming it smallImage2, smallImage3, smallImage4
• Add 4 images to your site
• Select the ellipsis in the ImageURL property and select the image in each imageButton
•

• Using the cursor change the size of the imageButtons down to a small button

• Add an Image control and name it bigImage

• Double click the imageButton and add this code:

 Venky

bigImage.ImageUrl = sender.imageURL
We are going to use the same subroutine for each imagebutton So instead of using
smallimage1.imageURL we use the imageURL of the sending object.That way it does not matter
which imageButton is clicked, that image will get put into the image control

• Scroll down to the code for the first imageButton and you will see the following code

added:

• copy this code into each of the other imageButton controls

• test it

Another feature you may want to add:
• Select the image control
• Change the height and width properties to 300 each

This will keep the image size steady

 Venky

RadioButton

• The RadioButton control is used to display a radio button.
• RadioButtons are usually used in groups to allow the user to pick one from the group.
• All radioButtons in the same group must have the same groupName property

Property Description
AutoPostBack A Boolean value that specifies whether the form should be posted

immediately after the Checked property has changed or not. Default is false
Checked A Boolean value that specifies whether the radio button is checked or not
Id A unique id for the control
GroupName The name of the group to which this radio button belongs
OnCheckedChanged The name of the function to be executed when the Checked property has

changed
runat Specifies that the control is a server control. Must be set to "server"
Text The text next to the radio button
TextAlign On which side of the radio button the text should appear (right or left)
 <script runat="server">
 Sub submit(Sender As Object, e As EventArgs)
 if red.Checked then
 Label1.Text="You selected " & red.Text
 elseIf green.Checked then
 Label1.Text="You selected " & green.Text
 elseIf blue.Checked then
 Label1.Text="You selected " & blue.Text
 end if
 End Sub
 </script>
 <html><body>
 <form runat="server">
 Select your favorite color:

 <asp:RadioButton id="red" Text="Red" Checked="True" GroupName="colors"

runat="server"/>

 <asp:RadioButton id="green" Text="Green" GroupName="colors" runat="server"/>

 <asp:RadioButton id="blue" Text="Blue" GroupName="colors" runat="server"/>

 <asp:Button text="Submit" OnClick="submit" runat="server"/>
 <p><asp:Label id="Label1" runat="server"/></p>
 </form>
 </body></html>

Determining if radioButton was checked: Save as: RadioButton.aspx
If radioButtonName.checked then ‘do code if checked
End if

• Open Visual Studio
• Add a new webform
• Name it radioEx.aspx
• Click the Add button

 Venky

• Select the Design View
• Add a label to the webform, change the text property to Select your favorite color. Change

the id to lblPrompt
• Add an 3 radioButton controls to the webform

• Change the id of the radioButtons to red, green, blue
• Change the text of the radioButtons to Red,Green, Blue
• Set the autoPostBack property for all 3 radioButtons to true
• Press the control key and select each of the radioButton controls then change the

groupName of all of them to Colors
• Change the checked property of the first radioButton to true

• Add another label below these controls and change the id to lblOutput, clear the text
property

• Double-click the first radioButton
• Look at the subroutine signature:

Protected Sub red_CheckedChanged(ByVal sender As Object, ByVal e As System.EventArgs)
Handles red.CheckedChanged

Visual Studio creates a subroutine and named it red_checkedChanged that handles the
checkedChanged event of the red radioButton control

• Change the subroutine name to getChanged.
• Add a comma at the end and add green.checkedChanged
• Add another comma and add Blue.checkChanged

This will set this one subroutine to handle all 3 radioButton’s checkedChanged event

 Venky

Protected Sub getChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles
red.CheckedChanged, blue.CheckedChanged, Green.CheckedChanged

Add the following code to this subroutine:

If sender.Checked Then

lblOutput.Text = "You selected " & sender.Text

End If

Notice you are using the text from the sender object which will be passed into the subroutine

• test it

 Venky

Literal Control
• The Literal control is used to display text on a page. The text is programmable.
• This control does not let you apply styles to its content!

Property Description
id A unique id for the control
runat Specifies that the control is a server control. Must be set to

"server"
Text Specifies the text to display

• Open Visual Studio
• Add a new webform
• Name it literal.aspx
• Click the Add button
• Select the Design View
• Add a label control and name it myLabel
• Add a literal control to the webform and name it myLiteral
• Erase the text in both controls

• Double-click the form and add this code:

myLabel.text=”Label Example”
myLiteral.text=”Literal Example”

right click and view in Browser
now right click the browser and view source

Notice the Label is displayed in a tag
But the literal is just displayed
A literal control displays ONLY the value in the text property

 Venky

Panel Control
• The Panel control is used as a container for other controls.
• This control is often used to generate controls by code and to display and hide groups of

controls.
• This control renders as an HTML <div> element.

Property Description
BackImageUrl Specifies a URL to an image file to display as a background

for this control
HorizontalAlign Specifies the horizontal alignment of the content. Legal values

are: Center ,Justify ,Left ,NotSet ,Right.
id A unique id for the control
runat Specifies that the control is a server control. Must be set to

"server"
Wrap A Boolean value that specifies whether the content should

wrap or not

Try this:
1 <script runat="server">
2 Sub Page_Load(sender As Object, e As EventArgs)
3 if check1.Checked then
4 panel1.Visible=false
5 else
6 panel1.Visible=true
7 end if
8 End Sub
9 </script>
10 <html>
11 <body>
12 <form runat="server">
13 <asp:Panel id="panel1" runat="server" BackColor="#ff0000" Height="100px"

Width="100px">
14 Hello World!
15 </asp:Panel>
16 <asp:CheckBox id="check1" Text="Hide Panel control" runat="server"/>
17

18 <asp:Button Text="Reload" runat="server" />
19 </form>
20 </body>
21 </html>
Save as: Panel.aspx

• Open Visual Studio
• Add a new webform
• Name it Panel.aspx
• Click the Add button
• Select the Design View
• Add a checkbox control and name it chkDisplay
• Add a panel control and name it pnlDisplay

o You can make it larger by dragging the corners out

 Venky

• Add 2 label, 2 textboxes and a button control into the panel control

• Change the text properties of the labels to Username and Password.
• Change the text of the button control to Submit

• Select the checkbox and set the autoPostback property to true
• Change the text to Display Login
• Double-click the form and add this code:

If chkDisplay.Checked Then
pnlDisplay.Visible = True
Else
pnlDisplay.Visible = False
End If

• test it

 Venky

LinkButton
• The LinkButton control is used to create a hyperlink button.
• This control looks like a HyperLink control but has the same functionality as the Button

control!
Property Description
CausesValidation By default, a page is validated when a Button control is

clicked. To prevent a page from being validated when clicking
on a Button control, set this property to "false"

Command The command associated with the Command event
CommandArgument Additional information about the command to perform
id A unique id for the control
OnClick The name of the function to be executed when the link is

clicked
runat Specifies that the control is a server control. Must be set to

"server"
Text The text to display for the link

Try this:
1 <script runat="server">
2 Sub lblClick(sender As Object, e As EventArgs)
3 Label1.Text="You clicked the LinkButton control"
4 End Sub
5 </script>
6 <html>
7 <body>
8 <form runat="server">
9 <asp:LinkButton Text="Click me!" OnClick="lblClick" runat="server" />
10 <p><asp:Label id="Label1" runat="server" /></p>
11 </form>
12 </body>
13 </html>
Save as: LinkButton.aspx

• Open Visual Studio
• Add a new webform
• Name it linkButton.aspx
• Click the Add button
• Select the Design View
• Add a linkButton to the webform

o Change the text property to Click Me
• Add a label control

o Change the id to lblOutput
o Erase the text property of the label control

• Double-click the hyperlink control
• Add this code:

 Venky

lblOutput.text=”You clicked the linkButton.”

• test it

Calendar
• The Calendar control is used to display a calendar in the browser.
• This control displays a one-month calendar that allows the user to select dates and move to

the next and previous months.
Property Description
CellPadding The space, in pixels, between the cell walls and contents
CellSpacing The space, in pixels, between cells
DayHeaderStyle The style for displaying the names of the days
DayNameFormat The format for displaying the names of the days. Can take

one of the following values:
• FirstLetter
• FirstTwoLetters
• Full
• Short

DayStyle The style for displaying days
FirstDayOfWeek What should be the first day of week. Can take one of the

following values:
• Default
• Monday
• Tuesday
• Wednesday
• Thursday
• Friday
• Saturday
• Sunday

id A unique id for the control
NextMonthText The text displayed for the next month link
NextPrevFormat The format of the next and previous month links. Can take

one of the following values:
• ShortMonth
• FullMonth
• CustomText

NextPrevStyle The style for displaying next and previous month links
OnDayRender The name of the function to be executed when when each

day cell is created
OnSelectionChanged The name of the function to be executed when the user

selects a day, week, or month
OnVisibleMonthChanged The name of the function to be executed when the user

navigates to a different month
OtherMonthDayStyle The style for displaying days that are not in the current

month
PrevMonthText The text displayed for the previous month link
runat Specifies that the control is a server control. Must be set to

 Venky

"server"
SelectedDate The selected date
SelectedDates The selected dates
SelectedDayStyle The style for selected days
SelectionMode How a user is allowed to select dates. Can take one of the

following values:
• None
• Day
• DayWeek
• DayWeekMonth

SelectMonthText The text displayed for the month selection link
SelectorStyle The style for the month and weeks selection links
SelectWeekText The text displayed for the week selection link
ShowDayHeader A Boolean value that specifies whether the days of the

week header should be shown
ShowGridLines A Boolean value that specifies whether the grid lines

between days should be shown
ShowNextPrevMonth A Boolean value that specifies whether the next and

previous month links should be shown
ShowTitle A Boolean value that specifies whether the title of the

calendar should be shown
TitleFormat The format for the title of the calendar. Can take one of the

following values:
• Month
• MonthYear

TitleStyle The style of the title of the calendar
TodayDayStyle The style for today's date
TodaysDate Today's date
VisibleDate The date that specifies the month that is currently visible in

the calendar
WeekendDayStyle The style for weekends

Simplest Calendar example, try this:

1 <html>
2 <body>
3 <form runat="server">

4 <asp:Calendar runat="server" />
5 </form>
6 </body>
7 </html>

Save as: Calendar1.aspx

• Add a new webform
• Name it Calendar.aspx
• Add a calendar control, name it myCalendar
• Test it

It display the calendar with the current month

 Venky

• Click the arrow at the top right of the Calendar control

• Select a scheme:

Notice the various properties that were changed. You can change them further if you like

The follow allows you to show the current day differently

• Add a label and button control, name the label lblDisplay

Double click the button and add this code:
lblDisplay.Text = "Date selected was " & myCalendar.SelectedDate.ToShortDateString()

• Test it

 Venky

BulletedList Control

The bulletedList Control renders as either an ordered list (numbered)or unordered list(bulleted)
Each list can be rendered as:

• Plain text

• A LinkButton Control

• Link to another page

• Open Visual Studio

• Add a new webform

• Name it Bulleted.aspx

• Add a DataSource Control and set it to a database table

• Add a BulletedList control

• Click the smart tag and Choose Data Source

• Select the Data Source you added earlier

• Select the field to display

Look at the code:

• Right click the page and select View in Browser

 Venky

You can change the appearance for each list item using the BulletStyle property

Circle Disc Square Numbered

LowerAlpha UpperAlpha LowerRoman UpperRoman

NotSet Custom Image

In Custom Image you must set the BulletImageURL property

Here’s the code:

You can modify the function of each list item by changing the DisplayMode property

• Hyperlink

o Item is rendered as a link to another page

• LinkButton

o Item is rendered as a LinkButton control

• Text

o Item is rendered as plain text

• Add another BulletedList control

• Change the DisplayMode to Hyperlink

• Click the smart tag and select Edit items

 Venky

• Click the add button

• Add Google in the text property

• Add http://www.google.com in the value property

• Add two more, pick any website

Here is the code:

FileUpload Control

The FileUpload Control allow you to upload files to the server

• Open Visual Studio

• Add a new webform

• Name it fileUpload.aspx

• Add a label control and name is message

• Add a button control

• Double click the button and add this code:

If Page.IsValid Then
Try
FileUpload1.SaveAs(String.Concat("C:\", FileUpload1.FileName))
message.Text = String.Concat("The file '", FileUpload1.FileName, "' was successfully uploaded")
Catch ex As Exception
message.Text = String.Concat("An error occurred uploading the file ", FileUpload1.FileName, "'
– ", ex.Message)
End Try
End If

• Add a customValidator Control

• Double-click the validator control and add this code:

'Verify the control has a file
If Not FileUpload1.HasFile Then
CustomValidator1.ErrorMessage = "A file is required in order to proceed"
args.IsValid = False
Else

http://www.google.com

 Venky

Dim ext As String =
System.Web.VirtualPathUtility.GetExtension(FileUpload1.FileName).ToUpper()
If Not ext = ".GIF" And Not ext = ".JPG" Then
CustomValidator1.ErrorMessage = String.Concat("Invalid file type '", etx, "' - must be .gif or .jpg
to continue")
args.IsValid = False
Else
args.IsValid = True
End If
End If

• Test it

User Controls

A user control allows you to package frequently used user interfaces and the processing logic in a
way that can be used as a pluggable component

Use Web User Controls to create reusable page elements

• Headers

• Footers

• Navigation bars

• Menus

You can also use them to create new controls out of other multiple controls

Code
Example:
1 <%@ Control Classname=”MyTime” %>
2 <table width=”40%” bgcolor=”cyan”>
3 <tr>
4 <td><h3>Current time is:</h3></td>
5 </tr>
6 <tr>
7 <td><h4>

<%=Now.toString(“hh:mm:ss tt”)%> </h4></td>
8 </tr>
9 </table>

Save as: Time.ascx

• This code gets the current time from the server

• The user control is saved with a .ascx extension

• The server doesn’t allow you to load the .ascx file directly in your browser. A user control can

only be requested from within a web form

1 <%@Register TagPrefix=”TimeControl” Tagname=”MyTime”
Src=”time.ascx” %>

2 <html><head></head><body>
3 <TimeControl:MyTime id=”MyTime1” runat=”server” />
4 </body></html>

 Venky

Save as: GetTime.aspx

• TagPrefix

o Namespace the user control belongs to

• Tagname

o Name the user control is recognized by

• Src

o Virtual path to the source code file of the user control

 User Controls can be composed of HTML controls, ASP.Net server controls, client-side scripts
and other user controls\

• User controls always end in .ASCX

• User Controls cannot be requested from the server directly

• If the web form that you are converting to a user control has a @page directive then change it to

a @Control directive

Open Visual Studio

• Add a new item to your website, select User Control

• Name it Header.ascx and click Open

 Venky

• Type Your Company Name at the top and center it

• Add a horizontal Rule from the HTML tab of the toolbox

• Adjust the properties as you like and save it

• Add a new web form page and call it Main.aspx

• Drag the Header.ascx from the solution explorer to the page

• Test it

Handling Events:

Example:

• Add another web user control and call it

contentRotator.ascx

• Add a label control, call it lblDisplay, erase the text property

• Double-Click the page and add the following code to the

page_load event
 Select Case Int(Rnd()*3)
 Case 0
 lblDisplay.text=”content 1”
 Case 1
 lblDisplay.text=”content 2”
 Case 2
 lblDisplay.text=”content 3”
 End Select

 Venky

• The page_load in a web user control loads differently

• First the page_load in the containing page executes and then the user control’s page_load

executes

• Drag the contentRotator.ascx to your aspx page

• Test it

• Right-click and refresh browser a few times

Placeholder

The placeholder control saves a spot for you to programmatically add or remove controls.

You can add or remove as many controls as you want to the placeholder control

Use the Add method to add controls to the placeholder

Use the remove method to remove them

• Open Visual Studio
• Add a new webform
• Name it Placeholder.aspx
• Click the Add button
• Select the Design View
• Add 3 RadioButton controls

o Name then
� Opttextbox
� Optlabel
� Optbutton

o Set the text properties to
� Textbox
� Label
� Button

o Set the groupName of them all to controlType
o Set the autoPostback properties to true for all 3

• Add a button control
o Set the name to btnSubmit

 Venky

o Set the text to Submit
• Add a Placeholder control

o Name it myPlaceholder

• Double-click the button and add this code:
If optTextbox.Checked Then

myPlaceholder.Controls.Add(textbox1)
textbox1.Text = ""

End If
If optLabel.Checked Then

myPlaceholder.Controls.Add(label1)
label1.Text = "Hello World"

End If
If optButton.Checked Then

myPlaceholder.Controls.Add(button1)
button1.Text = "Submit"

End If

• Above the subroutine add this code:
Dim button1 As Button = New Button()
Dim textbox1 As TextBox = New TextBox()
Dim label1 As Label = New Label()

Code Example:
1 Dim button1 As Button = New Button()
2 Dim textbox1 As TextBox = New TextBox()
3 Dim label1 As Label = New Label()
Explanation:
1 Dynamically creates a button control in memory
2 Dynamically creates a textbox control in memory
3 Dynamically creates a label control in memory

 Venky

Code Example:
1 If optTextbox.Checked Then
2 myPlaceholder.Controls.Add(textbox1)
3 textbox1.Text = ""
4 End If
5 If optLabel.Checked Then
6 myPlaceholder.Controls.Add(label1)
7 label1.Text = "Hello World"
8 End If
9 If optButton.Checked Then
10 myPlaceholder.Controls.Add(button1)
11 button1.Text = "Submit"
12 End If
Explanation:
1 Check to see if the first radioButton is checked
2 If it is checked add the textbox control that was created dynamically to the

controls collection of the placeholder
3 Erase the default text on the textbox
4 End the if statement
5 Check to see if the second radioButton is checked
6 If it is checked add the label control that was created dynamically to the

controls collection of the placeholder
7 Change the default text on the label to Hello World
8 End the if statement
9 Check to see if the third radioButton is checked
10 If it is checked add the button control that was created dynamically to the

controls collection of the placeholder
11 Change the default text on the button to Submit
12 End the if statement

Lesson 6: A few more elements
Did you manage to make a few pages on your own? If not, here is an example:

 <html>
 <head>
 <title>My website</title>
 </head>
 <body>
 <h1>A Heading</h1>
 <p>text, text text, text</p>
 <h2>Subhead</h2>
 <p>text, text text, text</p>
 </body>
 </html>

Now what?

Now it is time to learn seven new elements.
In the same way you emphasise the text by putting it between the openning tag and the
closing tag , you can give stronger emphasis by using the openning tag and the
closing tag .

 Venky

Example 1:
 Stronger emphasis.
Will look like this in the browser:

Stronger emphasis.

Likewise, you can make your text smaller using small:
Example 2:
 <small>This should be in small.</small>

 Will look like this in the browser:
This should be in small.

Can I use several elements at the same time?

You can easily use several elements at the same time as long as you avoid overlapping elements.
This is best illustrated by an example:
Example 3:
If you want to emphasise small text, it must be done like this:
 <small>Emphasised small text</small>
And NOT like this:
 <small>Emphasise small text</small>

The difference is that in the first example, we closed the tag we first opened last. This way we
avoid confusing both ourselves and the browser.
More elements!

As mentioned in Lesson 3 there are elements which are opened and closed in the same tag.
These so-called empty elements are not connected to a specific passage in the text but rather are
isolated labels. An example of such a tag is
 which creates a forced line break:
Example 4:
 Some text
 and some more text in a new line Will look like
this in the browser:
Some text

and some more text in a new line

Notice that the tag is written as a contraction of an opening and closing tag with an empty space
and a forward slash at the end:
.
Another element that is opened and closed in the same tag is <hr /> which is used to draw a
horizontal line ("hr" stands for "horizontal rule"):
Example 5:
 <hr />
 Will look like this in the browser:

Examples of elements that needs both an opening tag and a closing tag - as most elements do - is
ul, ol and li. These elements are used when you want to make lists.
ul is short for "unordered list" and inserts bullets for each list item. ol is short for "ordered list"
and numbers each list item. To make items in the list use the li tag ("list item"). Confused? See
the examples:
Example 7:

 A list item
 Another list item

will look like this in the browser:

• A list item

• Another list item

Example 8:

 Venky

 First list item
 Second list item

will look like this in the browser:

1. First list item

2. Second list item

Phew! Is that all?

That is all for now. Again, experiment and make your own pages using some of the seven new
elements you learned in this lesson:
 Stronger emphasis
 <small>Small text</small>

 Line shift
 <hr /> Horizontal line
 List
 Ordered list
 List item

Lists

ArrayList-A collection of items containing a single data value.
Use the Add method to add items to the ArrayList

Example:
1 <script runat="server">
2 Sub Page_Load
3 if Not Page.IsPostBack then
4 dim Munsters=New ArrayList

5 Munsters.Add("Herman")
6 Munsters.Add("Lily")
7 Munsters.Add("Grandpa")
8 Munsters.Add("Eddie")
9 Munsters.Add("Marylyn")
10 end if
11 end sub
12 </script>

An ArrayList object contains 16 entries by default.
You can resize an ArrayList with the TrimToSize() method:

Example:
1 <script runat="server">
2 Sub Page_Load
3 if Not Page.IsPostBack then
4 dim Munsters=New ArrayList

5 Munsters.Add("Herman")
6 Munsters.Add("Lily")
7 Munsters.Add("Grandpa")
8 Munsters.Add("Eddie")

 Venky

9 Munsters.Add("Marylyn")
10 Munsters.TrimToSize()
11 end if
12 end sub
13 </script>

You can sort an ArrayList alphabetically or numerically with Sort()

Example:
1 <script runat="server">
2 Sub Page_Load
3 if Not Page.IsPostBack then
4 dim Munsters=New ArrayList
5 Munsters.Add("Herman")
6 Munsters.Add("Lily")
7 Munsters.Add("Grandpa")
8 Munsters.Add("Eddie")
9 Munsters.Add("Marylyn")
10 Munsters.TrimToSize()
11 Munsters.Sort()
12 end if
13 end sub
14 </script>

You can sort in reverse order using Reverse() after the Sort() method

Example:
1 <script runat="server">
2 Sub Page_Load
3 if Not Page.IsPostBack then
4 dim Munsters=New ArrayList
5 Munsters.Add("Herman")
6 Munsters.Add("Lily")
7 Munsters.Add("Grandpa")
8 Munsters.Add("Eddie")
9 Munsters.Add("Marylyn")
10 Munsters.TrimToSize()
11 Munsters.Sort()
12 Munsters.Reverse()
13 end if
14 end sub
15 </script>

 Venky

List Controls

3 types
1. Simple List Controls

1. CheckboxList
2. DropDownList
3. Listbox
4. RadioButtonList

2. RepeaterControl
1. Repeater

3. ComplexListControls
1. DataList
2. DataGrid

Common Properties of List Controls
Property Description
AutoPostBack Postback occurs then user changes list selection
DataMember Table
DataSource dataSource
DataTextField Field in the dataSource to use
DataTextFormatString Formatting string that controls the format of the data
DataValueField What field in the data source provides the value of each list item
Items Collection of items in the list control
SelectedIndex Lowest index of the selected items
SelectedItem Item selected with the lowest index in the list control
Events:
OnSelectedIndexChanged
Called whenever the selection of the list control changes and is posted back to the server.

CheckBoxList
Properties ofCheckBoxList
Property Description
CellPadding Between border and contents of the cell
CellSpacing Distance between cells
RepeatColumns How many columns to display in checkboxlist control
RepeatDirection Vertical or Horizontal
RepeatLayout Flow or Layout(default)
TextAlign Left or Right

Bind checkBoxList to an Array

• Open Visual Studio

• Add a new webform call it check1.aspx

 Venky

• Type Pick your favorite Munster:

• Drag a checkBoxList control to the page

• Name it chkMunster

• Double-click the page and add this code in the page_load:

dim Munsters=New ArrayList Munsters.Add("Herman") Munsters.Add("Lily") Munsters.Add("Grandpa")

Munsters.Add("Eddie") Munsters.Add("Marylyn") Munsters.TrimToSize() if Not Page.IsPostBack then

chkMunsterList.DataSource= Munsters dataBind() end if

• Test it

Now Let’s add additional code to change how the checkboxlist displays:
• Add a checkbox control

o Name it chkMode

o Set text to Display Vertically

o Set checked to true

o Set autopostback to true

• Double-click the checkbox and add this code:

If chkMode.checked then
chkMunsterList.RepeatDirection=RepeatDirection.Vertical
else
chkMunsterList.RepeatDirection=RepeatDirection.horizontal
end if

 Venky

Display selected items from the list when the button is clicked

• Add a label control name it lblDisplay

• Add a button control

• Double-click the button

Add this code to the button click event:
Dim labelString="You Selected:
" Dim myCount as Integer for myCount=0 to

chkMunsterList.Items.Count-1 if chkMunsterList.Items(myCount).Selected then

labelString+=chkMunsterList.Items(myCount).Text labelString+="
" end if next

lblDisplay.text=labelString

DropDownList
Property Description
SelectedIndex Index of the item selected

• Open Visual Studio

• Add a new webform call it DropDownList.aspx
• Add a dropDownlist and name it ddlState
• Add a label control and name it lblDisplay
• Select the smart tag on the dropdownlist
• Check the enable AutoPostBack

 Venky

• Select Edit Items

• Click Add
• Change the text to Pick your state
• Leave the value blank
• Click Add again
• Enter Ohio in the text and OH in the value
• Add three more

o Florida Fl
o California CA
o Kentucky KY

• Click OK
• Test it
• Double-click the page and add this code to the page_load

1 If ispostback then
2 If ddlState.SelectedIndex=0 then
3 lblDisplay.text="You did not select anything"
4 else
5 lblDisplay.text="State: " & ddlState.SelectedItem.text & "
"
6 lblDisplay.text+="Abbrev: " & ddlState.SelectedItem.value & "
"
7 lblDisplay.text+="SelectedIndex: " & ddlState.SelectedIndex
8 end if
9 end if

 Venky

Data Access
There are 3 main types of dataBound controls

1. List Controls
2. Tabular databound controls
3. Hierarchical databound controls

List Controls:
1. BulletedList
2. CheckboxList
3. DropDownList
4. Listbox
5. RadioButtonList

Tabular DataBound Controls
1. Display a set of data

1. GridView
2. DataList
3. Repeater

2. Display a single data item at a time
1. DetailsView
2. FormView

The DataGrid is included in ASP.Net 2.0 for backward compatibility. It is not recommended to
use it
Hierarchical DataBound Controls

1. Menu
2. TreeView

Both of these controls are bound to an XMLDataSource Control
You can bind any control to these data items
You can also bind any control to a data item by adding the control to a template
DataSource Controls

1. SQLDataSource
1. Retrieve data from a SQL relational database

� SQL Server
� Oracle
� DB2

1. AccessDataSOurce
1. Retrieve from a Microsoft Access database

2. ObjectDataSource
1. Retrieve data from a business object

3. XMLDataSource
1. Retrieve data from an XML document

4. SiteMapDataSOurce
1. Data retrieved from a sitemap provider

These fall within one of two categories
Represent tabular data:

• SQLDataSource
• AccessDataSource
• ObjectDataSource

Represent tabular and hierarchical data
• XMLDataSource
• SiteMapDataSource

Databound controls are associated with one of these dataSources with its DataSourceID property

DataSource Controls and Parameters

 Venky

SQLDataSource, AccessdataSOurce and ObjectDataSOurce can use the following parameters:
• Paremeter

o Static value
• ControlParameter

o Value of a control or page property
• CookieParameter

o Value of a browser cookie
• FormParameter

o Value of an HTML form field
• ProfileParameter

o Value of a profile property
• QueryStringParameter

o Value of a querystring field
• SessionParameter

o Value of an item stored in a session
A parameter in SQLDataSource represents an ADO.Net parameter
A parameter in ObjectDataSource represents a method parameter

This example allows the user to select a record from a dropDownList and displays the
details in a gridView. The second data source control uses a controlparameter in the
where clause

• Download the following file
http://www.prowebdesigners.com/aspnet/resources/database.mdf

• Open Visual Studio
• Add a new webform
• Add an existing item, select the database file you just downloaded
• Add it to the App_Data directory

• Add a SQLDataSource control to the page(from the data tab in the toolbox)

http://www.prowebdesigners.com/aspnet/resources/database.mdf

 Venky

• Click the smart tag and select Configure Data Source
• From the dropdown list select the database.mdf file
• Visual Studio will recommend saving your connection string in your configuration file.

This is a very good practice. Click Next.

• Select your table and the columns you want. Click * to select all columns.
• Click OrderBy to sort the data
• Select the column you want to sort by in the dropdown list

• Click Next

• Click Test Query to test it
• Click Finish

 Venky

Here is the code:

• Add a dropDownList Control
• Select Choose Data Source

• Select the SQLDataSource you just set up

Select the field you want to display in the dropDownList then the field you want to pass when
submitted.
 Select SurveyName to display
Select Survey_id to pass when submitted. This will uniquely identify the selected row

 Venky

• Click OK
• Set the AutoPostBack property to True
• Test it

Here is the code:

• Add another SQLDataSource control
• Select Configure Data Source

• Select the connection string you created in the last data Source

• Select all columns and then click the Where button

 Venky

• Select Survey_Id as the column
• Make sure = is selected in the second dropdownList
• Select control as the Source

This will retrieve the parameter from a control. Once you select this more options appear
• Select the dropDownList control
• Click Add

It adds the code for your parameter
• Click OK

You where clause is now complete

• Click Next

• Click Finish

Here is the code:

• Add a gridView control
• Click Choose Data Source

 Venky

• Select the second dataSource you just created

• Test it

When you select a name from the dropDownList the record displays in the gridView
Here is the code for the gridView:

Programmatic dataBinding
ASP.Net 1.1 only supported this type of dataBinding
Example:
Dim fonts as New InstalledFontCollection()
controlName.dataSource=fonts.families
controlName.dataBind()
You can assign the following to the dataSource property:

• Collections
• Arrays
• DataSets
• DataReaders
• DataViews
• Enumerations

The control retrieves the data from the data source when you call the dataBind() method
You do not have to rebind the control and the data source every time the page is requested
because the View State remembers the items and displays them
Templates and DataBinding
All the data bound controls support templates except for the treeView
The Repeater, DataList and FormView require templates
Templates are used to format the appearance and layout of each of the data items.
You can use data binding expression to display the value of the data within the templates
A template can contain HTML, DataBinding expressions and other controls, even data bound
controls.

 Venky

Data Binding Expressions
DataBinding expressions are not evaluated until runtime
Syntax:

<%# %>

Example:

Underneath the Eval() method calls the dataBinder.Eval() method
So:
<%# Eval("Survey_ID") %>
Is the same as:
<%#DataBinder.Eval(Container.DataItem,”Survey_id”)%>
 ASP.Net 1.1 made you use DataBinder.Evel()
ASP.Net 2.0 provides a shorter method
 You can also use formatting:
<%#Eval(“DataEntered”,”{0:D}”)%>
 You can call other methods besides Eval()
 For Example
Perhaps you have a function that changes a string to lowercase
 Public Function Lowerit(by val myString as Object) as String
Return myString.toString().toLower()
End function
 Then you can use this Binding Expression:
<%# Lowerit(Eval(“SurveyName”))%>
Two way DataBinding Expressions
In a one way dataBinding expression you can use dataBinding to display a value
 In a two way dataBinding expression you can use dataBinding to display a value AND you can
modify the value of the data item

If you like this site please link to it

 Venky

Detailsview Control
The DetailsView control in ASP.Net 2.0 is used to create an HTML table that displays the
contents of a single database record.
Displaying Data with the Details View Control in ASP.Net 2.0

• Open Visual Studio

• Add a webForm to your website, name it DetailsView.aspx

• Add a DataSource control to the page and configure it to a database

• Add a DetailsView control to the webForm

• Select the DetailsView control and click on the smart tag

• Select Choose Data Source

• Select the Data Source control you added

• The DetailsView control now formats itself for your data

• Test it and it displays the first record

1 < asp : SqlDataSource ID ="SqlDataSource1" runat ="server" ConnectionString ="
<%$ ConnectionStrings:codecrumbsConnectionString %> "
SelectCommand ="SELECT * FROM [Surveys]"></ asp : SqlDataSource >

2 < asp : DetailsView ID ="DetailsView1" runat ="server" AutoGenerateRows
="False" DataSourceID ="SqlDataSource1"
Height ="50px" Width ="208px">

3 < Fields >
4 < asp : BoundField DataField ="Survey_id"

 Venky

HeaderText ="Survey_id" InsertVisible ="False"
ReadOnly ="True" SortExpression ="Survey_id" />

5 < asp : BoundField DataField ="SurveyName"
HeaderText ="SurveyName" SortExpression ="SurveyName" />

6 < asp : BoundField DataField ="SurveyComments"
HeaderText ="SurveyComments"
SortExpression ="SurveyComments" />

7 </ Fields >
8 </ asp : DetailsView >

1 SQL Sata Source Control

Connection String to the database
SelectCommand contains the SQL statement to retrieve the data

2 Open DetailsView Control
Set the dataSourceID to our SQL Data Source

3 Set up fields
4 Create a dataBound field

The HeaderText is SurveyID – This is the text that is used to label the textbox
The dataField is set to the Survey_Id database field

5 Create a dataBound field
The HeaderText is SurveyName – This is the text that is used to label the textbox
The dataField is set to the SurveyName database field

6 Create a dataBound field
The HeaderText is SurveyComments – This is the text that is used to label the
textbox
The dataField is set to the SurveyComments database field

7 Close the Fields
8 Close the DetailsView Control

DetailsView Fields in ASP.Net 2.0

You can control the appearance of the DetailsView
The DetailView control supports the following Fields

BoundField Displays the value of a data item as text
CheckBoxField Displays the value of the data item as a check box
CommandField Displays links for editing, deleting and selecting rows
ButtonField Displays the value of a data item as a button, imagebutton,

linkbutton
HyperlinkField Displays the value of a data item as a link
ImageField Displays the value of a data item as an image
TemplateField Customize the appearance of a data item

Change the text describing each row

• Click on the DetailsView smart tag

• Select Edit Fields

 Venky

• Select any of the fields

• Select HeaderText

• Change the value to whatever you want displayed to the left of the data field

<asp:BoundField DataField="SurveyName" HeaderText="Survey Name"
SortExpression="SurveyName" />
 You can also choose to not display a field

• Select the field you do not want to display

 Venky

Insert Visible – Determine if this field will be displayed when the detailsView’s mode is set to
insert
ShowHeader – Determines if this field will display a header text
Visible – Determines if this field will be displayed

<asp:BoundField DataField="Survey_id" HeaderText="Survey_id" InsertVisible="False"
ReadOnly="True" SortExpression="Survey_id" ShowHeader="False" Visible="False" />
Formatting Data

I’ve added another field in the database called PricePaid of type money to demonstrate the
dataFormatString property

• Select the field you want to format

• Add your format string to the DataFormatString property

You must also set the HTMLEncode to false to let the DataFormatString work

<asp:BoundField DataField="PricePaid"
DataFormatString="{0:c}" HeaderText="PricePaid"
SortExpression="PricePaid" HtmlEncode="False" />
Change the order the rows are displayed

You can select one of the fields and click the up or down arrow buttons next to it to mode it up or
down in the DetailsView

 Venky

Displaying a message when there is no data

There are two ways to display a message when the data source is returning no results.
1. EmptyDataText Property

2. EmptyDataTemplate Property

EmptyDataText Property

• Select the detailsView and click on the EmptyDataText property in the property window

• Add a text message to display when no data is available

<asp:DetailsView ID="DetailsView1" runat="server" AutoGenerateRows="False"
DataSourceID="SqlDataSource1" Height="50px" Width="208px"
EmptyDataText="There is no data">
EmptyDataTemplate

You can display more complex messages when there is no data including ASP.Net controls.
• Click on the smart tag

• Select Edit Templates

Select EmptyDataTemplate from the dropdownlist

You can now drop controls into this box and set their properties

 Venky

1 < EmptyDataTemplate >
2 < asp : Label ID ="Label1" runat ="server" Text ="Sorry, No

Data"></ asp : Label >< br />
3 < asp : Image ID ="Image1" runat ="server" ImageUrl ="~/NoData.gif" />
4 </ EmptyDataTemplate >

Paging Data with the DetailsView Control in ASP.Net 2.0

• To allow paging change the AllowPaging property to true

This can be done in the properties window or by clicking the smart tag

<asp:DetailsView ID="DetailsView1" runat="server" AutoGenerateRows="False"
DataSourceID="SqlDataSource1"
Height="50px" Width="208px" EmptyDataText="There is no data"
AllowPaging="True">
Paging with AJAX

You page is posted back to the server each time you page by default
You can use AJAX to page through the data in the DetailsView control

• Set the EnablePagingCallBacks property to true

 Venky

Now the paging is done on the client-side
To test this let’s add a label control to the page
Name it showTime
Clear the text property
Double click on the page and add this line of code in the page_load method
showTime.text=DateTime.Now

Test the page and do some paging, notice the date and time does not change. This shows that the
page never posted back to the server.
Customize the DetailsView Paging Interface

By default, numbers are displayed for paging
You can change that by changing the PagerSettings property
Click the plus sign next to the pagerSettings in the properties window

You can add a URL for an image in the following properties:
• FirstPageImageURL

• LastPageImageURL

• NextPageImageURL

• PreviousPageImageURL

You can change the text links in the following properties:
• FirstPageText

• LastPageText

• Next PageText

• Previous PageText

You can change the format or the pager by changing the Mode property
Possible Values are:

• Numeric (default)

• NextPrevious

• NextPreviousFirstLast

• NumericFirstLast

 Venky

You can change the position of the paging control by changing the Position property
Possible values are:

• Bottom

• Top

• TopAndBottom

Change the amount of numbers that display by changing the PageButtonCount property

< PagerSettings PageButtonCount ="2" Mode ="NextPreviousFirstLast" />
Updating Data with the DetailsView Control in ASP.Net 2.0

Change the DetailsView control’s autoGenerateEditButton to true

This adds an Edit linkButton

You must set the DataKeyNames property to the primary key of the data source for this to work

• Select the ellipsis button in the DataKeyNames value

Select the primary key and click the arrow button

 Venky

The control will automatically generate textboxes to allow the user to change the values

It also automatically creates a Update and Cancel linkButton
You must also add an UpdateCommand in your dataSource control
Select the data Source control and click on the UpdateQuery property in the properties window

Add your query into the UpdateCommand

By default the detailsView uses the name of each field as the parameter name, you only need put an @
symbol in front of it (For SQL Server)
You can force the DetailsView control to appear in the Edit mode by setting the defaultMode to Edit

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
ConnectionString=" <%$ ConnectionStrings:codecrumbsConnectionString %>"
SelectCommand="SELECT * FROM [Surveys]"
UpdateCommand="Update Surveys set SurveyName=@SurveyName,
SurveyComments=@SurveyComments,PricePaid=@PricePaid where
Survey_ID=@Survey_ID"> </asp:SqlDataSource>
<asp:DetailsView ID="DetailsView1" runat="server" AutoGenerateRows="False"
DataSourceID="SqlDataSource1"
Height="50px" Width="208px" EmptyDataText="There is no data"
AllowPaging="True" EnablePagingCallbacks="True" AutoGenerateEditButton="True"
DataKeyNames="Survey_id">

 Venky

Editing Details View control with Templates

You can add validation when editing in the DetailsView control by using templates.

• Click on the DetailsView smart tag

• Select Edit Fields

• Click on TemplateField

• Click the Add button

• Click on all but the primary key field and delete it by clicking the red x button

 Venky

• Click the OK button

• Click the smart tag again and select Edit templates

• Select the smart tag and choose ItemTemplate

The Item template is used to display the data

• Add a label for each field and text describing them

• Click the first label and select the smart tag

• Select Edit Data binding

Make sure text is selected and add this code to the Code Expression

 Venky

Do this for each label
You can add formatting as well

• Make sure Enable Editing is checked

• Now you can select EditItemTemplate

 Venky

• Add a two textboxes and text to label them

• Click the smart tag on the first textbox

• Select Edit DataBinding

• Type bind(“fieldname”)

You must use BIND instead of EVAL
• Click OK

• Do the same for the next textbox

Add a requiredFieldValidator to the template

 Venky

• Set the controlToValidate property to the name of the first textbox

• Do the same for each textbox

 Click the smart tag and select End Template Editing

• Make sure EnablePagingCalls is false

Formview Control

Use the FormView control to:

• Display
• Insert
• Edit
• Delete
• Page

Database records
The formView control is completely template driven
You can also add validation controls
Display Data with the FormView Control
Use the itemTemplate to display database records

• Open Visual Studio
• Add a webForm to your website, name it formView.aspx
• Add a DataSource control to the page and configure it to a database

Using SQL Server:
• Select all the fields
• Click Next
• Click Finish
• Name the data Source control FVDataSource
• Add a formView to the control

 Venky

• Configure the formView control to the dataSource by selecting the smart tag and click on

• Test it

It will show the first record in the data Source
Here is the code:

The itemTemplate has dataBinding expressions that display the value of the database columns
Visual Studio also added the InsertItemTemplate and the EditItemTemplate for you
The Eval() method retrieves the values of the columns
You can also format the value
Ex:
<%#Eval(“Amount”,”{0:c}”)%>
Paging
You can let the formView automatically create the paging interface or
you can customize it yourself with the PagerTemplate property

 Venky

To let it automatically allow paging set the AllowPaging property to true

• Click the smart tag on the formView control
• Check Enable Paging

• Test it

Here is the code:

Currently the formView does not support AJAX
Paging is not exactly efficient
PagerTemplate
Allows you to customize the appearance of the paging interface

Properties of PagerTemplate
FirstPageImageURL Display an image for the first page link
FirstPageText The text for the first page link
LastPageImageURL Display an image for the last page link
LastPageText The text for the last page link
Mode Display Mode

• NextPrevious
• NextPreviousFirstLast
• Numeric
• NumericFirstLast

NextPageImageURL Image for the next page link
NextPageText Text for the next page link
PageButtonCount The number of page number links to display
Position The position of the paging interface

• Bottom
• Top
• TopAndBottom

PreviousPageImageURL Image for the previous page link
PreviousPageText The text for the previous page link
Visible Hides the paging interface

• Click the msart tag on the formView control
• Make sure Enable Paging is true
• Select Edit Templates

 Venky

• Click the dropdownlist and select PageTemplate

• Add a LinkButton control, name it btnPrev
• Set the text property to Previous Page
• Set the CommandName property to Page
• Set the CommandArgument to Prev

Add another LinkButton control, name it btnNext
• Set the text property to Next Page
• Set the CommandName property to Page
• Set the CommandArgument to Next
• Click the smart tag again and select End Template Editing

Each button you has a CommandName and CommandArgument property
CommandName is set to Page
CommandArgument is set to one of the following

CommandArgument values
First Navigate to the first page
Last Navigate to the last page
Prev Navigate to the previous page
Next Navigate to the next page

 Venky

Number Navigate to a certain page number
• Click on the Source view
• Find the PagerTemplate in the code
• Add a blank line right after the pagerTemplate

• Type:

Page: <%#formView1.PageIndex+1%>
This returns the current page of the formview.
PageIndex is zero based so you must add 1 to it .Test it.

Editing with the formView control

• Click the smart tag
• Select Edit Templates

• Select EditItemTemplate from the dropDownList

Visual Studio automatically added labels and textboxes for each field

 Venky

You can change these to other controls if you want

It also adds Update and Cancel linkbuttons with the functionality already added
Here is the code:

• All you have to do is add a button to get to this template
• Click the smarttag
• Select Edit Templates
• Select ItemTemplate
• Add a button to the itemTemplate and change the text to Edit
• Change the CommandName to Edit

When the user clicks the button it will take them to the EditItemTemplate
But first your datasource control needs to be configured for updating and deleting for this to work
Select the formView and double click on the dataKeyNames

• Select the column with your primary key and click OK

Add this to the Data Source Control

 Venky

UpdateCommand="Update Surveys set SurveyName=@SurveyName,
SurveyComments=@SurveyCommentswhere Survey_ID=@Survey_ID"

Visual Studio automatically uses the same field names as the parameters
You can set the formview to the Edit mode by default by setting the DefaultMode property to Edit
Inserting Data with the formView control

• Add another button to the itemTemplate
• Name it btnNew
• Set the text to New

• Set the command Name to New

You can put the formView into Insert mode by default by setting the defaultMode to Insert
Add the InsertCommand to the data Source control
InsertCommand=”INSERT into surveys(SurveyName,SurveyComments) VALUES
(@SurveyName,@SurveyComments)”

Deleting Data with the formView control
Deleting also requires you set the dataKeyNames property

• Add another button called btnDelete
• Set the text to Delete
• Set the CommandName to Delete
• Add the SQL statement to the DeleteCommand to the data Source control

DeleteCommand=”Delete from Surveys where survey_id=@survey_id”

EmptyDataTemplate
You can specify a message to display if the data Source is empty
Click the smart tag and select EmptyDataTemplate
Type: No records available

 Venky

• Click the smart tag again and select End Template Editing
This message will show if no records are availabe
The Repeater Control

The repeater control is driven completely by templates. This allows you to output the control anyway you

want it.

Templates of the repeater control
• ItemTemplate

o Required to display data

o Formats each item from the datasource

• HeaderTemplate

o Formats the content before the items from the dataSource

• FooterTemplate

o Formats the content after the items from the dataSOurce

• AlternatingItemTemplate

o Formats every other item from the dataSource

• SeperatorTemplate

o Formats between each item from the dataSource

Displaying Data

Use the itemTemplate to display data

This template is the only required template, all others are optional.

• Start a new WebSite in Visual Studio 2005

• Add a webform

• Drag a DataSource control to the page and configure it to a dataSource

• Drag a repeater control to the page

• Click the smart tag and configure it to the dataSource control

• Open the Source code view

 Venky

• Type a

< you choices show up in intellisense

• Select ItemTemplate

Now you can add any formatting code you want as well as fields from the database

Add:<%#Eval(“fieldname”)%>

Example:

The headerTemplate and footerTemplate can be used to start and stop tables or add other items to
the beginning and the end of your data

Add an AlternatingItemTemplate tag

The order you declare the templates does not matter

 Venky

Copy the same content from the itemtemplate

Add a class to the <tr> tag in the alternatingItemTemplate

Add a style in the head of the document
<style type=”text/css”>
.alternate
{
background-color:#cccccc;
}
</style>

The seperatorTemplate is used to add items between each data item

 Venky

Events

• DataBinding

o When repeater control bound to its dataSOurce

• ItemCommand

o When a control in the repeaterControl raises an event

• ItemCreated

o When each repeatercontrol item is created

• ItemDataBound

o When each item is bound

Master Pages

Master pages give your site a steady look and feel
Master pages contain both HTML and a code part
They create a common template that can be used on many pages
Updating the master page automatically updates all pages using it
A master page has 2 parts

1. Content that appears on each page that inherits the master page
2. Regions that can be customized by the pages inheriting the master page

Master pages can contain HTML, Web controls and server side source code

• Open Visual Studio
• Add a new item
• Select Master Page

 Venky

Master pages end with .Master

BY default visual studio names the master page masterPage.master

A Master page need to specify both the parts common to all pages and the parts that are
customizable

Items you add to the master page appear on all pages that inherit it

Use contentPlaceHolder controls to specify a region that can be customized

Add a table to the Master page

It adds on ContentPlaceHolder by default
If you place controls outside the content placeholders they will be displayed on all pages

 Venky

You can have multiple contentPlaceHolder controls
Each contentPlaceHolder control can be used to customize the ASP.Net page that inherits the
master page

• Add a new item
• Select Web form
• Check Select Master Page checkbox

• Select the master page you created.
All masterpages in your site will appear

 Venky

All is grayed out except the contentPlaceHolder control

You can only add controls to and modify inside the ContentPlaceHolder

The purpose of a master page is to define a template for the website
Master pages contain a default contentPlaceHolder control when you create then
To add another contentPlaceHolder control

• Open the master page
• Drag a contentPlaceHolder to the master page

This control appears in the toolbox when you are in a master page

 Venky

Master pages start with <%@ Master %> directive instead of a <%@Page %> directive

Websites can have more than one master page

Using a table for layout

• Add a new Master page

Select from MENU:
Layout
Insert Table

• Select the table settings
• Pick the number of rows and columns, alignment, width, height etc
• Select Header,Footer, and Side setting from the template

• Drag the contentPlaceHolder into one of the table cells

Format a table Cell
• Click inside a table cell
• Click on the style property

This opens the style builder

 Venky

• Set the font, background, layout etc

Default Content in a Master page
You can put content in the contentPlaceHolder control in a Masterpage, then in the ASP.Net page
you can replace it with different content or leave it in there

In the master page

In the ASP.Net page inheriting from the Master page
If it doesn’t show up in the ASP.Net page right click on the control and select Create Custom
Content

You can replace this content or use the default version
You can right click the control and select Default to Master’s content

 Venky

Email in ASP.Net 2.0

How Email Works

Email server sends and retrieves your email message
Mostly 2 protocols used

1. SMTP

a. Simple Mail Transfer Protocol

b. Send EMail

2. POP

a. Post Office Protocol

b. Retrieve Email

Mail client software sends email
to a mail server using SMTP protocol
Mail server uses SMTP to send mail to recipient’s mail server
Recipient’s mail client uses POP to retrieve the email from their mail server
MIME protocol
Multi-purpose Internet Mail extension
Defines how the content and attachments are formatted

Create an email message

 Venky

System.Net.Mail namespace has 4 main classes
1. MailMessage

a. The email message

2. SMTPClient

a. Sends mail message

3. MailAttachment

a. An email attachment

4. MailAddress

a. Email address used in

� From

� To

� Cc

� Bcc

The MailMessage Class

When you use a displayname it is displayed in the mail client’s email list instead of the
email address
Steps in creating an email message:

• Create a mailMessage object

• Assign the properties

• Create a SMTPClient object

• Specify details about SMTP server

• Send the mailMessage with the SMTPClient object’s Send method

Constructors

MailMessage()
MailMessage(from,to)
MailMessage(from,to,subject,body)

Properties

• From: The sender of the email in the form of MailAddress instance.

• To: Indicates direct recipients of the email in the form of MailAddress instances.

• CC: The carbon copy recipients of the email in the form of MailAddress instances.

• Bcc: The blind carbon copy recipients of the email in the form of MailAddress instances.

• Subject: The subject of the message.

• Body: The body of the message.

• IsBodyHtml: Boolean value if the message body is HTML or text.

• ReplyTo: Address where all replies are directed

• Priority: Priority of the email message

o Values-Normal, high, low

 Example:
Dim message As New System.Net.Mail.MailMessage("jim@starkstate.edu ", "
jo@prowebdesigners.com ")
message.Subject = "test"
message.Body = "This is a test"
Example 2:
Dim message As New System.Net.Mail.MailMessage()
message.From = New System.Net.Mail.MailAddress("jo@prowebdesigners.com")
‘To must be set with the to.add as shown
message.To.Add(New System.Net.Mail.MailAddress("jim@starkstate.edu"))
message.Subject = "Comments from ProwebDesigners.com"
message.Body = String.Concat("Name:", txtName.Text, "Email:", txtEmail.Text, "Comments:",

 Venky

txtComment.Text)

Send email message
 Use the send() method of the SMTPClient Class to send your message after you create it
Constructors

SMTPClient() when setting up in web.config
SMTPClient(name) name of smtp server
SMTPClient(name,port)
Methods

Send(message) sends mailmessage object
Send(from, to, subject, body)
Ex:
Dim client as new SMTPClient()
Client.Send(message)
Dim client as new smtpClient(“emailservername”)
Client.send(“jo@prowebdesigners.com”, txtTo.text, txtSubject.text,txtBody.text)
Example:
Dim client as new System.Net.Mail.smtpClient()
Client.send(message)

Set up SMTP server setting in the web.config
You must specify the hostname and optionally the port which is normally 25
<system.net>
 <mailSettings>
 <smtp>
 <network host="mail.yoursite.com"
 userName="email@ yoursite.com" password="password" />
 </smtp>
 </mailSettings>
</system.net>
MailAddress

Sending messages to more than one email address:
Create a MailAddress object for each To property
Ex:
Dim message as New MailMessage()
Message.from=new MailAddress(“from@prowebdesigners.com”)
Message.to.Add(“Address2@prowebdesigners.com”)
Message.to.Add(“Address1@prowebdesigners.com”)
Constructors of MailAddress
MailMessage(address)
MailAddress(address,displayName)
Create email with CC
Dim fromAddress as new MailAddress(txtfrom.text,txtDisplay.text)
Dim toAddress as new MailAddress(txtTo.text)
Dim ccAddress as new MailAddress(txtCC.text)
Dim message as new MailMessage(fromAddress,toAddress)
Message.Subject=txtSubject.text
Message.body=txtBody.text
Message.cc.add(ccAddress)
Alternative Method
Dim message as New MailMessage(txtfrom.text, txtTo.text, txtSubject.text,txtBody.text)

 Venky

Message.cc.add(new MailMessage(ccAddress)

Attachments-collection of attachment objects

Add Attachment to email message
Attachment is file sent with email message
SMTP is designed to send text messages not binary files
You must convert them to text before it can be sent
Then it is converted back to binary when received
By default it uses UUEncode to convert it
Ex:
New attachment(filename)
Ex:
Dim myfilename as string
Myfilename=”C:\myfiles\Document.doc”
Dim myattach as new attachment(filename)
Dim message as new mailMessage(txtfrom.text, txtTo.text, txtSubject.text,txtBody.text)
Message.attachments.add(myattach)
Alternative method
Dim myfilename as string
Myfilename=”C:\myfiles\Document.doc”
Message.attachments.add(new attachment(myfilename))

Using FileUpload control to add attachments

Add a fileupload control to the page
Add this code:
If FileUpload1.HasFile Then
Try FileUpload1.SaveAs(String.Concat("D:\yourpath\attachments\", FileUpload1.FileName))
Catch ex As Exception
 ‘add error handling here
End Try
Dim filename As String
filename = (String.Concat("D:\yourpath\attachments\", FileUpload1.FileName))
Dim myattach As New System.Net.Mail.Attachment(filename)
message.Attachments.Add(myattach)
End If
Create an HTML message

Set the isBodyHTML to true
Then you can use HTML in the message that you assign to the body property
message.IsBodyHtml = True
message.Body = String.Concat("Name:", txtName.Text, "
Email:", txtEmail.Text,
"
Comments:", txtComment.Text)

Displaying a Multi-Part Form

The Multiview contol can be used to divide a page into multiple sub pages
MultiView control has following commands
NextView Activate the next view control
PrevView Activate the previous view control
SwitchViewByID Activate the view identified by the button

control’s commandArgument

 Venky

SwitchViewByIndex Activate the view identified by the button
control’s commandArgumen

• Open Visual Studio
• Create a web page
• Drag a multiView control to the page, name it multi1
• Add 3 view controls in the mutliview control

• Set the MultiView’s activeViewIndex to 0
• In View1

o Add a textbox control
� Name it txtName

o add a label above the textbox
� Set the label’s text to Enter your name
� Set the label’s id to lblName
� Set the label’s associatedControlID to txtName

o Add a button control
� Set the text to Next
� Set the commandName to NextView

• In View 2
o Add a textbox control

� Name it txtEmail
o Add a label

� Name it lblEmail
� Set the text to Enter your email
� Set the associatedControlId to txtEmail

o Add a button control
� Set the text to Next
� Set the commandName to NextView

• In view 3
o Type Name:
o add a label

� name it lblResultName
o Press enter
o Type Email:
o Add a label

� Name it lblResultEmail

 Venky

• Go to the code View
• Select View3 and Activate

Add this code:
lblResultName.text=txtName.text
lblResultEmail.text=txtEmail.text

Displaying Different Page Views
Multiview contol
Hide and display different areas of a page
Can use to create tabbed page
Or divide a long form into multiple forms

Contains one or more View controls
Use multiview to select a view control to render
The other view controls are hidden

You can only view one view control at a time
Multiview controls
Properties:

• ActiveViewIndex
o Select view control to show by index

• Views
o Get the collection of view controls in a multiview control

 Venky

Methods:
• getActiveVIew

o get the selected view control
• setActiveView

o select the active view
Event:

• activeViewChanged
o fired when a new view is selected

View Control
Container for other controls
Events:

• Activate
o When view gets selected

• Deactivate
o When view loses selection

 You can use a Multiview control with the Menu control to create a tabbed page
• Open Visual Studio
• Create a web page
• Drag a Menu control to the page, name it mnuTabs

• Set the orientation property to Horizontal

• Add a multiView control, name it multiTabs

• Drag a 3 view controls into the multiview control

 Venky

• Select the multiView control and set the ActiveViewIndex to 0

• Type into each View

You could also add controls

• Select the Menu Control and open the smart tag
• Select Edit Menu Item

• Click Add a root item button

 Venky

• Change the text to Tab1

• Change selected property to true
• Change the value to 0

Value must start with 0 and increment for each tab
The value is what gets passed to the ActiveViewIndex of the mutliView control to select the tabs

• Add two more tabs and change the text to Tab2 and Tab3
• Change the values to 1 and 2
• Click OK
• Double-click the menu control and add this code:

Dim index As Integer = Int32.Parse(e.Item.Value)
multiTabs.ActiveViewIndex = index

 Venky

Lets make it look a little nicer
• Click the webform
• Select the Style property

• Change the background color

You need to add 5 style classes

1. background color of the page
2. All tabs
3. Each tab
4. The selected tab
5. the contents of each tab

 Add a new item
o Stylesheet

• Double-click it in the solution explorer

• right-click on the body tag and select Build style

 Venky

• Select background
• Change the color to gray

• Go back to your web form
• Drag the stylesheet to the web form

It adds the code to link your page to the style sheet

• Select the CSS page again
• Right-click the web form and select Add Style Rule

Select Class Name
Name it .tabs

 Venky

• Click OK
• Right-click .tabs
• Select Build Style

• Select Position and Offset from normal mode

This makes the positioning relative

• Set the pixels for top and left offsets
• Go back to your web form
• Select the menu
• Change the CSSClass property to tabs

Back to the stylesheet
• Add a .tab class

• Select background color and pick a dark color

 Venky

• Select edges

o Solid line
o Custom 1 px
o black

Go to the web form and select the menu
Open the StaticMenuItemSyle and change the CssClass to tab

• Add another CSS class and name it .SelectedTab
• Change the background color

• Change the bottom border to solid, 1px, the color of the tabs(to blend in)

• Add a class for .tabContents
• Change the background to the same color as the tabs

 Venky

• Change all the padding to 10px
• Change all border to solid, 1px, black

• Go back to the web form
• Select the menu
• Open StaticSelectedStyle and change the cssClass to selectedTab

• Open the code view
• Select the <div> tab around the multiView control
• Change the Class property to tabContents

• Select the StaticSelectedStyle and change the horizontal Padding to 20px

 Venky

You can change the other styles as well

Wizard Control

The wizard control can be used to divide a large form into small subforms
A wizard has more features than a multiView control
It contains one or more wizardStep controls
Only one can be displayed at a time

Properties
CancelDestinationPageURL The URL the user is sent when they click

cancel
DisplayCancelButton Hide or display cancel button
DisplaySideBar Hide or display the Wizard’s side bar

which displays a list of all the steps
FinishDestinationPageURL The URL the user is sent when they click

the finish button
headerText Text that appears at the top of the wizard

control

Templates
FinishNavigationTemplate Control appearance of navigation area of

the finish step
HeaderTemplate Control appearance of the header area of

the wizard control
SideBarTemplate Control the appearance of the sidebar of

the wizard control
StartNavigationTemplate Control the appearance of the navigation

area of the start step
StepNavigationTemplate Control the appearance of the navigation

area of steps that are not the complete,
finish or start steps

Method

MoveTo() Move to a wizardStep

Events
ActivateStepChanged When a new wizardStep gets active
CancelButtonClick When cancel button clicked
FinishButtonClick When finish button clicked
NextButtonClick When next button clicked
PreviousButtonClick When previous button clicked
SideBarButtonClick When a sidebar button clicked
WizardStep controls:

Properties
AllowReturn Prevent or allow a user to return to this step from a

 Venky

future step
StepType • Auto – default, position determines the setting

• Complete – no buttons
• Finish – previous and finish buttons
• Start - no previous button
• Step – previous and next buttons

Title Title displayed in sidebar

• Add a new webform
• Name it wizard.aspx
• Add a wizard control, name it wizard1

• Change the headerText property to Survey

• Click in the wizard control and a container box lets you add to it

• Click on step2
• Add a label control
• Set the text to Enter your name
• Add a textbox
• Name it txtName
• Change the label’s associatedControlID to txtname

• Click the smart tag and select Add/Remove Wizard Steps

 Venky

• Click Add

• Change the ID to Step 3
• Add another and name it step4

• Click OK
• Click on step3
• Add a label control
• Set the text to Enter your email
• Add a textbox
• Name it txtEmail
• Change the label’s associatedControlID to txtEmail

• Click on step4
• Type Name: Add a label called lblResultName and clear the text

 Venky

• Type Email: Add a label called lblResultEmail and clear the text

• Go to the code view
• Select wizard1 and FinishButtonClick event

• Add this code:
lblResultName.text=txtName.text
lblResultEmail.text=txtEmail.text

• Select the smart tab and click on autoformat
• Pick a format

To enhance the behavior:

• Select the smart tag
• Add/remove wizard steps
• Click step3
• Change the stepType to Finish

 Venky

• Click Step 4
• Change the stepType to Complete
• Make sure step is set to step1

• Test it

Login Controls
ASP.Net uses Membership to create users,
authenticate users and change user settings by
default
Login Controls:
Login Control – Login form
CreateUserWizard – user registration form
LoginStatus – login or logout link
Loginname – display username
ChangePassword – allows the user to change their
password
PasswordRecovery – allow the user to retrieve their
password
LoginView – Display content depending on logged
in or out

 Venky

Web.Config

Web applications are set up for Windows authentication by default

You must change it to forms authentication

Login Control

Create a new folder

Name it PrivateFiles

With the folder selected, add a new webform, name is secretpage.aspx

Write This is the secret page on this page

First we will password protect the page and all other page sin this folder

Make sure authentication Mode is set to forms in the web.config in the root folder

Add a web.config file to the folder

 Venky

To restrict users from viewing the contents of a folder you must configure the authorization of the folder

Add the following code

<authorization>

 <deny users=”?” />

</authorization>

Now if you attempt to request any file in the PrivateFiles folder you will be redirected to login.aspx

Next you have to create the Login.aspx page
Add a login control and save the page

Create another page named CreateUser.aspx

 Venky

Run this page and create a new user

This automatically creates a SQL Server Express database and puts it in the App_Data folder

Now run the secretpage and it will redirect you to the login page. Enter your username and password and

you will go back to the secret page.

Login Properties
You can change the text in the login control

Failuretext is the text displayed when you login incorrectly

Instructiontext is the directions given to the user to login

 Venky

Modifying the CreateUserWizard control.You can set the CreateUserWizard control so it does not ask for

an email by setting the RequireEmail to false

Site Navigation

Site Structure- logical categories of a website’s pages

Create the site’s structure
Then create the site’s navigation

A Site’s navigation is used to assist user to browse your site
ASP.Net navigation controls:

• Menu

• Treeview

• breadcrumbs

ASP.Net uses a sitemap to document the site’s structure
A sitemap is an XML file
It defines the logical sections of the site
And may tie each section to a URL
After you have your sitemap you can use several ASP.Net controls to navigate the site

• SiteMapPath

o Create a breadcrumb

� A single line of text showing the user their location in the website structure

• TreeView

o Provides a hierarchical view of the site’s structure

o Renders as an expandable/cdollapsible tree

• Menu

o Menu items and subitems

Updating the sitemap immediately updates the navigational controls
Define the sitemap

• Open Visual Studio

• Add a new webform

• Name it navigate.aspx

• Add 4 more aspx pages, name them page1.aspx, page2.aspx,page3.aspx,page4.aspx

• Add text to each page identifying it

• Add a new item

 Venky

• Select sitemap, it should name it web.sitemap

Put the sitemap in the root directory.

You need to edit this xml file manually

It has a sitemap element

Inside are a couple siteMapNode elements
Each siteMapNode has a title, URL, and description attribute
Add a siteMapNode for each page

Notice the navigate siteMapNode is surrounding the others
A sitemap can be set up in spite of which directories a page may be in

Using Breadcrumb Navigation
The siteMapPath control displays a breadcrumb

You can use it to show the user where they are in the site

It also allows the user to move back to higher levels

You must have a sitemap for this control

• Drag a siteMapPath control to page1.aspx

• Test it

It displays a breadcrumb showing where in the site the user is

 Venky

• Add a siteMapPath control to each page

Customize the appearance
• Change the path separator property to a pipe symbol

There are 3 types of nodes

• Root Node

o Each siteMapPath has one root node

• Current Node

o Each siteMapPath has one Current node

o The current node matches the page the user is on

• General Nodes

o Rest of the nodes

• Click the smart tag on the siteMapPath control

• Select auto Format

• Pick a different format

TreeView

TreeView allows the user to navigate through the entire site

A treeview control requires a siteMapDataSource control which allows the control to automatically get

the data for navigation

Each node in the tree is rendered as a hyperlink to the particular page
• Add a SiteMapPathControl to the page

• Add a treeView control to the page

• Using the smart tag pick the SiteMapDataSource as the dataSource

• Test it

There are 4 types of nodes in a treeview
• Root Node

o Each siteMapPath has one root node

• Selected Node

o The current node matches the page the user is on

• Parent Nodes

o A node that has children besides the root node

• Leaf Nodes

o Nodes that have a parent but no children

Customizing

Click the autoformat option in the smart tag of the treeView

There are also several property that you can attach a style sheet to

• nodeStyle

o default style of all nodes in the treeView

 Venky

• HoverNodeStyle

o Style spplied when the user hovers his mouse over a certain node

• levelStyles

o allows you to apply style info for certain levels of the treeview

Other properties

collapseImageToolTip Tooltop shown to the user hovering over expand and collapse.You can
use {0} in the property to use the nodes text

CollapseImageURL Image URL for the collapse icon
ExpandImageURL Image URL for the expand icon
NoExpandImageURL Image URL for leaf icon
ImageSet Package of images can be used to define treeView images
NodeIndent Number of pixels to indent, 20 by default
NodeWrap Boolean property. If node’s text will wrap. Default is false
ShowExpandCollapse Boolean. If expand and collapse icons are show, true by default
ShowLines Boolean. If lines are drawn between each node
The imageSet has a list of packaged images to display next to icons

• Choices like:

Custom

• XPFileExplorer

• Msdn

• Windowshelp

• Simple1 and 2

• Bulletedlist 1,2,3,4

• Arrows

• News

• contacts

• Inbox

• events

• faq

Each provide different images for expand, collapse, for nonLeaf nodes and images for
nonexpendable and nonCollapsible leaf
You can provide your own images by setting it to custom and providing the URLs to the custom
images in the CollapseImageURL, ExpandImageURL and noExpandImageURL properties

 Venky

Menus

The menu will use the sitemap to display each item and it uses submenus for each item in a lower

hierarchy

• Add a menu control

• Configure it to the siteMapDataAccess Control

The menu control has both static and dynamic parts
The static part is always shown
The dynamic part is shown when the user interacts with it
StaticDisplayLevels property can be used to control how
many levels display

• Set the staticDisplayLevels to 2

• Set the orientation to horizontal

DisappearAfter property controls how long the submenu appears after the mouse leaves it. The
default is 500 for .5 seconds

Appearance of the Menus
The names of the properties start with either static or dynamic

Menu Control Properties

DynamicEnableDefaultPopOutImage
StaticEnableDefaultPopOutImage

If an image is displayed to show an item is a
submenu. Default is true

DynamicItemFormatString
StaticItemFormatString

Text of the menu Item. You can use {o} to
include the menu item’s sitemap value

DynamicPopOutImageTextFormatString
StaticPopOutImageTextFormatString

Tooltip to display for the pop out. Can use {0}

DynamicPopOutImageURL
Static PopOutImageURL

url of your image if you want to use an image
instead of an arrow

StaticSubMenuIndent Indentation between static menu item and its
static submenu

Orientation Vertical or horizontal
DynamicHorizontalOffset
DynamicVerticalOffset

Offset in pixelsbetween the right border of a
menu and the left border of its submenu item

ItemWrap If text in a menu item should be wrapped.
Default is false

 Venky

 Classes
Classes let you reuse application logic on multiple pages or even multiple applications.
If you need to write the same method more than once it should be in a class.
Access Modifiers

Used when declaring a class, method or property
Access modifiers determine who can have access to what in your classes

• Public

o No restrictions, everyone has access

• Private

o Can only be accessed from within THIS class

• Protected

o Can be accessed from only THIS class or a derived class

• Friend

o Can be accessed only from a class within the same assembly (.DLL). In ASP.Net this would

be everything in the same subdirectory.

• Protected Friend

o Can be accessed from the class, a derived class or another other class in the same

assembly

Let’s build a basic example:
• Add a new item

• Select Class

Visual Studio recommend putting all your classes in a special folder called App_Code

 Venky

• Click on Yes when it asks you to put your class in that folder

It creates the folder and places your file in it

It places you in the code:

Add the following code:
 Public Function Display() As String
 Return "Hello World"
 End Function

• Save it

• Now we need to make a web page to display this string

• Add a new webform

• Add a label, name it lblDisplay

• Double-click it

• Add the following code in the Page_load event:

(If webform is not available to add you may have to click the project name in the solutions
explorer first)
Dim objMyDisplay As New Class1
lblDisplay.Text = objMyDisplay.Display()

• Class1 has to be the same as your class filename

• Display() is the name of the function in the class

App_Code

You can add subdirectories in the app_code folder
If you have an error in one of these files and you want to come back to it later you must
temporarily hide it or the rest of your site will not work properly.
Right-click on it and select Exclude from project

You can write classes in Visual Basic or C# in the same website.
Each class file has to be in the same language
You must place classes written in a different language in their own subdirectory
You cannot mix different languages in the same folder because they get compiled together.
You also need to modify the web.config file to specify you are using subdirectories.
<configuration>
 <system.web>
 <compilation>

 Venky

 <codeSubDirectories>
 <add directoryName=”VBDirectory” />
 <add directoryName=”CSDirectory” />
 </codeSubDirectories>
 </compilation>
 </system.web>
</configuration>

This way two assemblies (DLL files) are created. One for C# and the other for Visual Basic. You
can call from both of these classes in the same webpage.

Methods

Methods can be subroutines or functions
• Functions return a value

• Subroutines do not return a value

Shared/Static Methods

A shared method is called directly and does not have to be instantiated.
Visual Basic and C# both have these methods but call them by a different name

• Shared - Visual Basic

• Static - C#

Many of the classes in the .Net Framework have shared methods. That is why they can be called
without instantiating them first.
We will use the same example we did earlier but this time make it a shared method
Change the code in your class file:
Public Shared Function Display() As String
 Return "Hello World"
 End Function
Change the code in your webform by erasing the following line:
Dim objMyDisplay As New Class1
You only need this line:
lblDisplay.Text = objMyDisplay.Display()

Fields

You can declare a field with the Public access modifier so it can be accessed from outside the
class.

• Add a new class

• Name it FieldExample.vb

• Add the following code:

 Public StrVar as String
Public Function Display() As String
 Return "Hello World"
 End Function

• Add a webform

• Add a label, name it lblDisplay

• Double-click the form and add this code to the page_load event

Dim objFieldEx as new FieldExample
objFieldEx.strvar=”Hello World”
lblDisplay.text=objFieldEx.Display()

 Venky

Properties

Properties give you a way to set or retrieve a variable from a class and apply validation to it.
With properties you make the variable private so it can only be access from within the class
Then the property is made public so it can be accessed. The property does the retrieving (GET)
and modifying (SET). This way error checking can be added.
You can leave out the SET and it becomes a readOnly property
It is customary to begin a provate member of a class with an underscore (_)

• Add a new class

• Call it propertyEx.vb

• Add

Imports System
• To line 1

• Add the following code in the class

Private _strVar as string
Public Property Display() as String
 Get
 Return _strVar
 End Get
 Set (ByVal Value as String)
 If Value.Length > 10 then
 Throw new exception(“Example error”)
 End if
 _strvar=Value
 End Set

 Public Function Display() As String
 Return _strVar
 End Function

• Add a webform

• Add a label named lblDisplay

• Add this code to the page_load

 Dim objPropertyVar as new PropertyEx
objPropertyVar.strVar=”Hello”
lblDisplay.text= objPropertyVar.Display()

Overloading Methods

Overloading is when you have two methods with the same name in a class. The methods have
different signatures. Signature are the order and type of parameters the method accepts.
Example
Public class OverloadExample
Public Sub Example(ByVal name as String)
 ‘ do something
End Sub
Public Sub Example(ByVal Name as String, ByVal age as integer)
 ‘do something
End Sub
End Class
You can call the Example subroutine by passing a String or a String and an Integer

 Venky

Partial Classes
You can define a class that spans two or more files
Include Partial in the class declaration
Code-behind pages in ASP.net use partial classes
Example:
Partial Public Class Parts
 Public StrVar as String
End Class
Partial Public Class Parts
 Public Function Display() As String
 Return "Hello World"
 End Function
End Class

Inheritance

One class can inherit from another class
When it does it includes all the non-private methods and properties of the parent class.
.Net uses inheritance extensively
All classes derive from the System.Object class
ASP.Net classes derive from System.Web.UI.Page class

Example:
Public Class FirstClass
 Private _price As Decimal
 Public Property Price() As Decimal
 Get
 Return _price
 End Get
 Set(ByVal value As Decimal)
 _price = value
 End Set
 End Property
End Class

Public Class secondClass
 Inherits FirstClass
 Private _tax As Decimal
 Public Property Tax() As Decimal
 Get
 Return Tax
 End Get
 Set(ByVal value As Decimal)
 _tax = value * Price()
 End Set
 End Property
End Class

The second class inheritas from the firstclass and is able to retrieve the price from the first class

Overriding Classes

You can overrise a method or proerty when inheriting a class.

 Venky

The class that is inherited from is called the base class.

Example:
Public Class FirstClass
 Private _price As Decimal
 Public Overridable Property Price() As Decimal
 Get
 Return _price
 End Get
 Set(ByVal value As Decimal)
 _price = value
 End Set
 End Property
End Class
Public Class secondClass
 Inherits FirstClass
 Public Overrides Property Price() As Decimal
 Get
 Return MyBase.Price * 0.78
 End Get
 Set(ByVal value As Decimal)
 MyBase.Price = value
 End Set
 End Property
End Class

MyBase.Price refers to the base class’s Property

Abstract Classes

You can use MustInherit to create an abstract class that must be inherited. An abstract class
cannot be instantiates by itself.
Example:
Public MustInherit Class FirstClass
 Private _price As Decimal
 Public MustOverride ReadOnly Property Price() As Decimal
End Class

Public Class secondClass
 Inherits FirstClass
 Public Overrides ReadOnly Property Price() As Decimal
 Get
 Return 20.00
 End Get
 End Property
End Class

This example create an abstract class called firstClass that must be overridden
The second class overrides it

 Venky

SQLDataSource Control

The SQL Server Data Source Control gives you the ability to quickly and easily use a SQL Server
database in a website.
The control is build for working with SQL Server 7 or newer. You can use it for the following
databases:
Microsoft SQL Server
Microsoft SQL Server Express
Microsoft Access
Oracle
DB2
MySQL
Most other databases
If you want to use a database other than SQL Server you have to reconfigure the control
It is a non-visual control. You use it with other controls.
Important parts of the SQLDataSource Control

� Id

� name of the control

� SelectCommand

� Select statement to use to connect to the database

� ConnectionString

� Source of the database

• Drag a SQLDataSource control to a webform

• Click the SmartTag

• Select Configure Data Source

• Click New Connection

If you want another dataProvider click on change

 Venky

If you are using SQL Server express select Microsoft SQL Server Database File

You can connect to other databases besides SQL Server

 You can select Oracle, Access or ODBC for other databases.
• Click Browse and select the SQL Server Express file

o It will be located in the App_Data directory

• Click Test Connection to check it

 Venky

• Click OK

• Click Next

Click Next again to save the connection in your web.config file

Storing connection strings in the web.config is more secure than storing them on each of your web

pages. By storing your data in the web.config you can easily change it for all pages at once and
allow connection pooling for better performance.

• Select Specify columns from a table or view

• Select your table

• Click * to select all columns

• Click the Advanced button

 Venky

• Click the checkbox to Generate INSERT, UPDATE and DELETE statements

• Click OK

• Click Next

• Click Finish

Here is the code it generated:
<asp:SqlDataSource ID="SqlDataSource1" runat="server"
ConnectionString="<%$ ConnectionStrings:myDatabaseConnectionString %>"
DeleteCommand="DELETE FROM [Contacts] WHERE [Contact_id] = @Contact_id"
InsertCommand="INSERT INTO [Contacts] ([Username], [email]) VALUES (@Username,
@email)"
SelectCommand="SELECT * FROM [Contacts]"

 Venky

UpdateCommand="UPDATE [Contacts] SET [Username] = @Username, [email] = @email
WHERE [Contact_id] = @Contact_id">
 <DeleteParameters>
 <asp:Parameter Name="Contact_id" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="email" Type="String" />
 <asp:Parameter Name="Contact_id" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="email" Type="String" />
 </InsertParameters>
</asp:SqlDataSource>

Here is the code in the web.config:
 <connectionStrings>
 <add name="myDatabaseConnectionString"
 connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=E:\Storage\XASPWebSites\Week2\App_Data\myD
atabase.mdf;Integrated Security=True;Connect Timeout=30;User Instance=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
You can modify it so the attachDbFilename is relative instead of an absolute one
I changed
AttachDbFilename=E:\Storage\XASPWebSites\Week2\App_Data\myDatabase.mdf
To
AttachDbFilename=|DataDirectory|\myDatabase.mdf
This will automatically look in the App_Data directory
ConnectionString="<%$ ConnectionStrings:myDatabaseConnectionString %>"
Is the expression in the sqldatasource control that represents the string in the web.config

• Add a gridView by dragging it to the webform

 Venky

• Select your SQLDataSource control from the dropdown list under Choose Data Source

• Right click on the webform and select View in Browser

Database Commands

The SQLDataSource control can represent four types of SQL commands
1. SelectCommand

2. InsertCommand

3. UpdateCommand

4. DeleteCommand

 Here are the commands automatically created:
DeleteCommand="DELETE FROM [Contacts] WHERE [Contact_id] = @Contact_id"
InsertCommand="INSERT INTO [Contacts] ([Username], [email]) VALUES (@Username,
@email)"
SelectCommand="SELECT * FROM [Contacts]"
UpdateCommand="UPDATE [Contacts] SET [Username] = @Username, [email] = @email
WHERE [Contact_id] = @Contact_id">
You can modify these if you like
Parameters

SQLDataSource supports the following parameter objects

ControlParameter

Represents the value of a control or the value of a
page property

CookieParameter Value of a browser cookie
FormParameter Value of an HTML form field
ProfileParameter Value of a profile property
QuerystringParameter Value of a querystring field
SessionParameter Value of an item stored in a session
SQLDataSource control can have five collections of parameters

• SelectParameters

• InsertParameters

• DeleteParameters

• UpdateParameters

• Filterparameters

Look at the code from our example:
<asp:SqlDataSource ID="SqlDataSource1" runat="server"
ConnectionString="<%$ ConnectionStrings:myDatabaseConnectionString %>"

 Venky

DeleteCommand="DELETE FROM [Contacts] WHERE [Contact_id] = @Contact_id"
InsertCommand="INSERT INTO [Contacts] ([Username], [email]) VALUES (@Username,
@email)"
SelectCommand="SELECT * FROM [Contacts]"
UpdateCommand="UPDATE [Contacts] SET [Username] = @Username, [email] = @email
WHERE [Contact_id] = @Contact_id">
 <DeleteParameters>
 <asp:Parameter Name="Contact_id" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="email" Type="String" />
 <asp:Parameter Name="Contact_id" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="email" Type="String" />
 </InsertParameters>
</asp:SqlDataSource>
 After the SQL commands there are DeleteParameters, UpdateParameters and InsertParameters
tags

These allow the user to enter dynamic data into the SQL statements
Look at the Delete statement:
DeleteCommand="DELETE FROM [Contacts] WHERE [Contact_id] = @Contact_id"

@Contact_id is a parameter

<DeleteParameters>
 <asp:Parameter Name="Contact_id" Type="Int32" />
</DeleteParameters>

Creates a parameter of type Int32 named Contact_id that is used in the delete statement

Update Statement:
UpdateCommand="UPDATE [Contacts] SET [Username] = @Username, [email] = @email
WHERE [Contact_id] = @Contact_id">

Update Parameter:
<UpdateParameters>
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="email" Type="String" />
 <asp:Parameter Name="Contact_id" Type="Int32" />
</UpdateParameters>

Notice a parameter for each one in the SQL statement

Insert statement:
InsertCommand="INSERT INTO [Contacts] ([Username], [email]) VALUES (@Username,
@email)"

Insert Parameter:

 Venky

<InsertParameters>
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="email" Type="String" />
</InsertParameters>

Notice that Contact_id is not listed as a parameter. That is because it is set to auto increment. It
would give you an error if you tried to add to this column.

ControlParameter

The controlParameter object allows you to retrieve a value from another control. The other control
has to be on the same page as the SQLDataSource control.
It includes two additional properties:
ControlID - control to retrieve data from
PropertyName - name of the property in the control to
retrieve from
Using the ControlParameter

• Add another webform

• Drag a SQLDataSource control to the page and set it to your database

You can select the connectionstring you created earlier to quickly connect to your database. Select
all columns and generate insert,update and delete.

• Add a dropDownList control and set autoPostback to true

• Click the smarttag and confige the data source

• Select your SQLDataSource control for the data source

• Select Username column to display and Contact_id as the value

• Add another SQLDataSource control

 Venky

• Configure your data source by selecting the connection string and Select all columns.

• This time click on the Where button

• Select Contact_id as the column

• Select Control as the source

• Select your dropDownList as your controlID

• Then click on Add

• Click Next

• Click Finish

• Add a detailsView control and set the data source to the second SQLDataSource control

 Venky

• Run it, now when you change the dropdownlist your detailsView data will change

Here is the code:
<asp:SqlDataSource ID="SqlDataSource2" runat="server" ConnectionString="<%$
ConnectionStrings:myDatabaseConnectionString %>"
SelectCommand="SELECT * FROM [Contacts] WHERE ([Contact_id] = @Contact_id)" >
<SelectParameters>
 <asp:ControlParameter ControlID="DropDownList1" Name="Contact_id"
 PropertyName="SelectedValue" Type="Int32" />
</SelectParameters></asp:SqlDataSource>

QueryStringParameter Object

Querystrings are often used when you want to create Master/Detail pages. A hyperlink on a
Master page is used to take the user to a more detailed page.
Using the QuerystringParameter Object to create Master/Detail pages

• Add a new webform

• Add a SQLDataSource control and configure it to your database.

• Add a gridView and configure it to your SqlDataSource control

• On the gridView click on Edit Columns

• Select the email column and click the delete button

• Do the same for the contact_id column and the username column

• Click on the hyperlink field and click add

 Venky

• Click on the dataTextField and select username

• Click on dataNavigateURLField and select contact_id

• Add this line to the dataNavigateURLFormatString:

detailsPage.aspx?id={0}

• test it

Now if you clicked on one of the hyperlinks it would send you to details.aspx and also send a
querystring

Here is the code created for the gridView:
<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
DataKeyNames="Contact_id" DataSourceID="SqlDataSource1">
<Columns>
 <asp:HyperLinkField DataNavigateUrlFields="contact_id"
 DataNavigateUrlFormatString="detailsPage.aspx?id={0}"
 DataTextField="Username" HeaderText="Select" />
</Columns>
</asp:GridView>

Next we must create the details.aspx page
• Add another webform and name it detailsPage.aspx

• Add a SQLDataSource control and configure it to your connectionstring

• Add all the columns

• Click on the where button

 Venky

• Select contact_id as the column

• Select Querystring as the Source

• The querystring field is contact_id

• Click on Add

• Click OK

• Click Next

• Click Finish

• Add a detailsView control and configure it to your SQLDataSource

• Save it and test your previous page with the hyperlinks again

This time click one of the hyperlinks

Programming SQL Commands

These events fire AFTER a SQLDataSource command
• Deleted - fires after its delete command

• Inserted - fires after its insert command

• Selected - fires after its select command

• Updated - fires after its update command

 Venky

You can add code to run when these events fire
These events fire BEFORE a SQLDataSource command

• Deleting - fires before the delete command is executed

• Inserting - fires before the insert command is executed

• Selecting - fires before the select command is executed

• Updating - fires before the update command is executed

• Filtering - fires before the SQLDataSource filters its data

You can add your own parameters in code before inserting, updating or deleting

Creating Parameters in Code

• Open the server Explorer

• Right click on the Contacts table

• Select Open Table Definition

• Add the following column information

• Add another webform

• Add a SQLDataSource control to the webform and configure it to your database

• Select all column and click advanced and generate your SQL statements

• Add a detailsView control and configure it to your SQLDataSource control

• Check the enable Inserting checkbox in the smarttag

• Change the DefaultMode property to Insert

Here is the current parameters created for you:

 Venky

<InsertParameters>
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="email" Type="String" />
 <asp:Parameter Name="dateEntered" Type="DateTime" />
</InsertParameters>

Look at the code for the detailsView:
<asp:DetailsView ID="DetailsView1" runat="server" AutoGenerateRows="False"
DataKeyNames="Contact_id"
DataSourceID="SqlDataSource1" DefaultMode="Insert" Height="50px" Width="125px"
OnItemInserting="DetailsView1_ItemInserting">
<Fields>
<asp:BoundField DataField="Contact_id" HeaderText="Contact_id" InsertVisible="False"
ReadOnly="True" SortExpression="Contact_id" />
<asp:BoundField DataField="Username" HeaderText="Username" SortExpression="Username"
/>
<asp:BoundField DataField="email" HeaderText="email" SortExpression="email" />
<asp:BoundField DataField="dateEntered" HeaderText="dateEntered"
SortExpression="dateEntered" />
<asp:CommandField ShowInsertButton="True" />
</Fields>
</asp:DetailsView>

• Delete the asp:BoundField named dateEntered.

We are going to programmatically add the value to this parameter. This will remove it from the
visual end of the control.
We want to add this code before the data is entered so we are going to use the Inserting event

• In the properties window click on the events button

We want ItemInserting

• Double click on the box beside it

It adds a code block for you:

 Venky

Here we can add the code to give the dateEntered parameter a value of the current date and time:
SQLDataSource1.InsertParameters.Item("dateEntered").DefaultValue = dateTime.Now()

Try it
Add some data
Open your table and you will see that your data has been entered and the current time and date are
also entered

Execute Select, Insert, update or delete command in code
The SQLDataSource control has 4 method that execute SQL commands

1. Select

2. Insert

3. Update

4. Delete

Each executes the appropriate SQL command
• Create a new webform

• Add 2 textboxes

• Name them txtUsername and txtEmail

• Add labels to identify the textboxes

• Add a button, change the text to Add

• Add a SQLDataSource control and configure it to your database

• Make sure to generate the SQL statements with the advanced button

• You can delete the update and delete command and parameters if you want they are not needed

• Add a gridView and configure it to your SQLDataSource control

• Double-click the button and add the following code:

SQLDataSource1.InsertParameters(“username”).DefaultValue=txtusername.text
SQLDataSource1.InsertParameters(“email”).DefaultValue=txtemail.text
SQLDataSource1.InsertParameters(“dateEntered”).DefaultValue=datetime.Now()
SQLDataSource1.Insert()
This code will create your parameters from the information passed in the textboxes when the user
clicks the button
Add a label and name it lblMessage

Click on the SQLDataSource event button and double-click inserting
Add this code:

 Venky

lblMessage.text=”Inserting Data”
Add another label and name it txtMessage2
Click on the SQLDataSource event button and double-click inserted

Add this code:
lblMessage2.text=”Data Inserted”

Data Source Mode

SQLDataSource control retrieves data in 2 ways
• Dataset (DataView)

• DataReader

The dataset is used by default
A Datareader is faster and more efficient.
It is a forward-only representation of the data
If you want to just get a fast retrieval of data
Erase the InsertCommand, DeleteCommand and UpdateCommands in the SQLDataSource
control code
Delete the insertParameters, UpdateParameters and DeleteParameters tags
Add the following line:
DataSourceMode="DataReader"
The complete code should now look like this:
<asp:SqlDataSource ID="SqlDataSource1" runat="server"
DataSourceMode="DataReader"
ConnectionString="<%$ ConnectionStrings:myDatabaseConnectionString %>"
SelectCommand="SELECT * FROM [Contacts]" >
</asp:SqlDataSource>
This technique is good for fast data retrieval when all you need is to view data
Make sure the gridView is set to your SQLDataSource control

Filtering Rows

You can filter the data returned by the SQLDataSource control

 Venky

• Add a new webform

• Add a textbox, button, SQLDataSource and gridView control

• Name the textbox control txtFilter

• Configure the SQLDataSource control for your connection string

• Select all columns

• Configure the gridView to the SQLDataSource

• Look at the code for the SQLDataSource control:

<asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$
ConnectionStrings:myDatabaseConnectionString %>"
SelectCommand="SELECT * FROM [Contacts]">
</asp:SqlDataSource>
Add a filter expression:

<asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$
ConnectionStrings:myDatabaseConnectionString %>"
FilterExpression=”Username like ‘{0}%’ ”
SelectCommand="SELECT * FROM [Contacts]">
</asp:SqlDataSource>

Then add a FilterParameter tag between the SQLDataSource tags:
<asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$
ConnectionStrings:myDatabaseConnectionString %>"
FilterExpression=”Username like ‘{0}%’ ”
SelectCommand="SELECT * FROM [Contacts]">
<FilterParameters>
 <asp:controlParameter Name=”username” controlID=”txtFilter” />
</FilterParameters>
</asp:SqlDataSource>

Stored procedures

You can assign the value StoredProcedure in any of the following properties
1. SelectCommandType

2. InsertCommandType

3. UpdateCommandType

4. DeleteCommandType

Creating a stored procedure in Visual Studio
• Open the server explorer

 Venky

• Expand the database until you see Stored Procedures

• Right-click on stored procedures and select Add New Stored Procedure

From here you can add a stored procedure

Type:

CREATE PROCEDURE myStoredProcedure
AS

Select Count(*) as NumUsers from Contacts

• Add a new webform

• Add a SQLDataSOurce control and configure it to your connectionstring

• Select Specify a custom SQL statement or stored procedure

• Click Next

• Select the Stored Procedure option

• Select your stored procedure from the dropdown list

 Venky

• Click Next

• Click Finish

• Test it

 Venky

 ASP.Net 2.0 tutorials & training
Error Handling

Try Catch Blocks

Open your web.config file
Set debug to true in web.config

• Add a new webform

• Type Generate an exception

• Add a button

• Double-click the button and add this code:

Dim test as string=nothing
Response.write(test.toString())
This will cause an exception

• Test it

Add try catch around it
Try
Dim test as string=nothing
Response.write(test.toString())
Catch ex as exception
Response.write(string.concat(“An error occurred”,ex.message)
End try
Generates a generic exception
Modify it:
Try
Dim test as string=nothing
Response.write(test.toString())
Catch nex as nullreferenceexception
 Response.write(string.concat(“The variable was not initialized”))
Catch ex as exception
Response.write(string.concat(“An error occurred”,ex.message)
End try

Exception handling stops trying to catch once an exception is handled
Put specific handlers first
Put generic handlers last

 Venky

Error Handling

Try Catch Blocks

Open your web.config file
Set debug to true in web.config

• Add a new webform

• Type Generate an exception

• Add a button

• Double-click the button and add this code:

Dim test as string=nothing
Response.write(test.toString())
This will cause an exception

Add try catch around it
Try
Dim test as string=nothing
Response.write(test.toString())
Catch ex as exception
Response.write(string.concat(“An error occurred”,ex.message)
End try
Generates a generic exception
Modify it:
Try
Dim test as string=nothing
Response.write(test.toString())
Catch nex as nullreferenceexception
 Response.write(string.concat(“The variable was not initialized”))
Catch ex as exception
Response.write(string.concat(“An error occurred”,ex.message)
End try

Exception handling stops trying to catch once an exception is handled
Put specific handlers first
Put generic handlers last

 Venky

DataSet Object in ADO.Net 2.0
The dataset object is an in-memory representation of data
The dataset object has a collection of dataTables and dataRelation objects
The dataset can contain one or more dataTables
Example:
The following example shows how you can have two dataTables in a single dataset and add a
dataRelation
Add this line above the page_load
Imports System.data
Add this to the page_load
'create new dataset
Dim ShoppingCart As New DataSet("Cart")
'create dataTable
Dim products As DataTable = ShoppingCart.Tables.Add("Products")
'add columns
products.Columns.Add("product_ID", GetType(Guid))
products.Columns.Add("ProductName", GetType(String))
products.Columns.Add("Price", GetType(Integer))
products.Columns.Add("cat_id", GetType(Guid))
'add primary key
products.PrimaryKey = New DataColumn() {products.Columns("product_ID")}
'create second dataTable
Dim category As DataTable = ShoppingCart.Tables.Add("category")
'add columns
category.Columns.Add("cat_id", GetType(Guid))
category.Columns.Add("catName", GetType(String))
'add primary key
category.PrimaryKey = New DataColumn() {category.Columns("cat_id")}
'create data relation
ShoppingCart.Relations.Add("shoppingcart_Products", _
 category.Columns("cat_id"),products.Columns("cat_id"))
Add some sample data
'add data
Dim shop, cat As Guid
'get new guids
shop = Guid.NewGuid()
cat = Guid.NewGuid()
'add row to category table
category.Rows.Add(cat, "household")
'Add row to products
products.Rows.Add(shop, "toaster", 25.21, cat)
'get another guid
shop = Guid.NewGuid()
'Add another row to products
products.Rows.Add(shop, "microwave", 250.0, cat)
'get another guid
shop = Guid.NewGuid()
'Add another row to products
products.Rows.Add(shop, "Silverware", 27.5, cat)
'get two new guids
cat = Guid.NewGuid()
shop = Guid.NewGuid()

 Venky

'add another row to category
category.Rows.Add(cat, "electronics")
'Add another row to products
products.Rows.Add(shop, "television", 300.0, cat)
'get another guid
shop = Guid.NewGuid()
'Add another row to products
products.Rows.Add(shop, "VCR", 250.0, cat)
Add 2 gridVIews to the webform
Add this code
'bind to first gridView
GridView1.DataSource = ShoppingCart
GridView1.DataMember = "products"
GridView1.DataBind()
'bind to second gridView
GridView2.DataSource = ShoppingCart
GridView2.DataMember = "category"
GridView2.DataBind()
Since a dataset can have more than one dataTable you must set the datasource to the dataset and
the dataMember to each dataTable

Serialize dataSet as XML

Use the dataset’s writeXML method to serialize a dataset to XML
Add this code
ShoppingCart.WriteXml(MapPath("Cart.xml"))
Here is the XML is created:
<?xml version="1.0" standalone="yes"?>
<Cart>
 <Products>
 <product_ID>9e5ff882-9f22-4ca2-a114-84b93abac05d</product_ID>
 <ProductName>toaster</ProductName>
 <Price>25</Price>
 <cat_id>231a895d-0094-4cb5-bd82-c1ac40c1f0e9</cat_id>
 </Products>
 <Products>
 <product_ID>4a13fd47-cfd1-4b78-a516-ea7c069b2ea2</product_ID>
 <ProductName>microwave</ProductName>
 <Price>250</Price>
 <cat_id>231a895d-0094-4cb5-bd82-c1ac40c1f0e9</cat_id>
 </Products>
 <Products>
 <product_ID>5ae1f57d-8ee1-47f8-b32c-9629cb64e9ec</product_ID>
 <ProductName>Silverware</ProductName>
 <Price>28</Price>
 <cat_id>231a895d-0094-4cb5-bd82-c1ac40c1f0e9</cat_id>
 </Products>
 <Products>
 <product_ID>9a14e5e7-c569-4ae1-8e76-a2809a6a8ed8</product_ID>
 <ProductName>television</ProductName>
 <Price>300</Price>
 <cat_id>c35ef4d4-b702-4fec-89b8-8620a24ffd24</cat_id>
 </Products>

 Venky

 <Products>
 <product_ID>84c059a2-0c18-472a-8bf2-3c1e5c679dd0</product_ID>
 <ProductName>VCR</ProductName>
 <Price>250</Price>
 <cat_id>c35ef4d4-b702-4fec-89b8-8620a24ffd24</cat_id>
 </Products>
 <category>
 <cat_id>231a895d-0094-4cb5-bd82-c1ac40c1f0e9</cat_id>
 <catName>household</catName>
 </category>
 <category>
 <cat_id>c35ef4d4-b702-4fec-89b8-8620a24ffd24</cat_id>
 <catName>electronics</catName>
 </category>
</Cart>

Adding DataType info to the XML file

Change the last line to this
ShoppingCart.WriteXml(MapPath("Cart2.xml"), XmlWriteMode.WriteSchema)
You can also put the schema info into a separate file with the following code
ShoppingCart.WriteXml(MapPath("Cart.xml"))
ShoppingCart.WriteXmlSchema(MapPath("cart.xsd"))
If you double-click on this file in solution explorer you see

Serialize dataset as diffGram

A diffgram is an XML file with all the data from your dataset
It also has the original datarow info
Add this code to create a diffgram:
ShoppingCart.WriteXml(MapPath("cartDiffGram.xml"), _
 XmlWriteMode.DiffGram)
A diffgram has all the datarow version info, whether rows have been added, changed etc.

Deserializing from a diffGram

You can use a diffgram to create a dataset from an XML file
Dim fromXml As New DataSet()
'create structure
fromXml.ReadXmlSchema(MapPath("cart.xsd"))
'populate from the XML file
fromXml.ReadXml(MapPath("cartDiffGram.xml"))
'bind to a third gridView
GridView3.DataSource = fromXml
GridView3.DataBind()

